给定一个长度为 N 的数列 A,以及 M 条指令,每条指令可能是以下两种之一:
C l r d
,表示把 A[l],A[l+1],…,A[r]都加上 d。Q l r
,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。
对于每个询问,输出一个整数表示答案。
输入格式
第一行两个整数 N,M。
第二行 N个整数 A[i]。
接下来 M 行表示 M 条指令,每条指令的格式如题目描述所示。
输出格式
对于每个询问,输出一个整数表示答案。
每个答案占一行。
数据范围
N≤500000,M≤100000,
1≤A[i]≤1018,
|d|≤1018,
保证数据在计算过程中不会超过 long long 范围。
输入样例:
5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4
输出样例:
1
2
4
代码:
/*
区间修改 区间查询
我们把区间修改和单点查询经过差分转化,让它变成单点修改和区间查询。
这里我们需要知道gcd{a,b}=gcd{a,a−b},变化一下这个柿子,发现gcd{a,b,c}就是gcd{gcd{a,b},gcd{b,c}}
,也就是gcd{a,b−a,c−a}。相信细心的同学们已经发现,一下规律:gcd{a1,a2,…,an}=gcd{a1,a2−a1,…,an−an−1}
要注意,代码中第i个数的d是指ai−ai−1,所以当我们查询[l,r]的区间最大公约数时,我们要用[l+1,r]的gcd和al求最大公约数。
*/
#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define int long long
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0);cout.tie(0);
typedef unsigned long long ull;
typedef pair<int, int> PII;
int lowbit(int x) { return x & (- x); }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
const int mod = 1e9 + 7;
const int N = 500010;
int n, m;
int w[N];
struct Node
{
int l, r;
int sum, d;
} tr[N * 4];
void pushup(Node& u, Node& l, Node& r)
{
u.sum = l.sum + r.sum;
u.d = gcd(l.d, r.d);
}
void pushup(int u)
{
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
void build(int u, int l, int r)
{
if (l == r)
{
int b = w[r] - w[r - 1];
tr[u] = {l, r, b, b};
}
else
{
tr[u].l = l, tr[u].r = r;
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
void modify(int u, int x, int v)
{
if (tr[u].l == x && tr[u].r == x)
{
int b = tr[u].sum + v;
tr[u] = {x, x, b, b};
}
else
{
int mid = tr[u].l + tr[u].r >> 1;
if ( x <= mid)modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
/*
query是分四种情况还是分两种情况应该是根据query的返回类型来判断的,一般返回一个sum值的时候就只用分两种情况加起来就可以了,返回值是一个Node对象的时候就需要分四种情况了。
具体区别应该在于当整个lr区间在mid的左边或者mid的右边的时候,如果返回值只是一个sum值,那么把左边或者右边的值加到res里面去,这时如果lr被mid分开,那么左右的值也是同样的加到res里面去,所以返回值是sum的时候,只用判断左右有没有区间,有就加上就可以了。
但是当返回值是Node的时候,当lr区间在mid两侧的时候,就应该直接返回一个query函数,而当lr区间在mid两边时就需要返回pushup(query(左区间),query(右区间)),所以需要分四种情况来递归。
*/
Node query(int u, int l, int r)
{
if (tr[u].l >= l && tr[u].r <= r)
return tr[u];
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (r <= mid) return query(u << 1, l, r);
else if (l > mid) return query(u << 1 | 1, l, r);
else
{
auto left = query(u << 1, l, r);
auto right = query(u << 1 | 1, l, r);
Node res;
pushup(res, left, right);
return res;
}
}
}
signed main()
{
IOS;
cin >> n >> m;
for (int i = 1 ; i <= n ; i++)
cin >> w[i];
build(1, 1, n);
int l , r;
int d;
char op[2];
while (m--)
{
cin >> op >> l >> r;
if (op[0] == 'Q')
{
auto left = query(1, 1, l);
Node right({0, 0, 0, 0});
if ( l + 1 <= r)
right = query(1, l + 1, r);
cout << abs(gcd(left.sum, right.d)) << endl;
}
else
{
cin >> d;
modify(1, l, d);
if ( r + 1 <= n)
modify(1, r + 1, -d);
}
}
return 0;
}