有几个古希腊书籍中包含了对传说中的亚特兰蒂斯岛的描述。
其中一些甚至包括岛屿部分地图。
但不幸的是,这些地图描述了亚特兰蒂斯的不同区域。
您的朋友 Bill 必须知道地图的总面积。
你自告奋勇写了一个计算这个总面积的程序。
输入格式
输入包含多组测试用例。
对于每组测试用例,第一行包含整数 n,表示总的地图数量。
接下来 n行,描绘了每张地图,每行包含四个数字 x1,y1,x2,y2(不一定是整数),(x1,y1)和 (x2,y2) 分别是地图的左上角位置和右下角位置。
注意,坐标轴 x 轴从上向下延伸,y 轴从左向右延伸。
当输入用例 n=0 时,表示输入终止,该用例无需处理。
输出格式
每组测试用例输出两行。
第一行输出 Test case #k
,其中 k 是测试用例的编号,从 1 开始。
第二行输出 Total explored area: a
,其中 a 是总地图面积(即此测试用例中所有矩形的面积并,注意如果一片区域被多个地图包含,则在计算总面积时只计算一次),精确到小数点后两位数。
在每个测试用例后输出一个空行。
数据范围
1≤n≤10000,
0≤x1<x2≤100000,
0≤y1<y2≤100000
注意,本题 n 的范围上限加强至 1000010000。
输入样例:
2
10 10 20 20
15 15 25 25.5
0
输出样例:
Test case #1
Total explored area: 180.00
样例解释
样例所示地图覆盖区域如下图所示,两个矩形区域所覆盖的总面积,即为样例的解。
思路:
/*
如图, 每遇到矩形的左边, 我们标记这条边的k为+1, 右边则k为-1, 那么, 我们计算有效的线段是 只要那个区间的k>0即可
同时我们的线段树用cnt储存当前段(整段)被覆盖次数, len储存当前段内有效线段总长
然后我们只要用线从左往右扫描, 并记录当前时刻的y方向有效线段长度, 并再每个点乘上x走过的距离得到面积, 加起来就是答案
有了思路, 从main开始看代码注释即可. 至于为什么不需要pushdown(麻烦理解了下面代码再回来看):
分类讨论:
对子节点的影响:
当cnt从任意值到非0, 根据modify代码, 我们都会从modify的第一个if进入pushup的第一个if, 然后发现这些情况都只需要算tr[1]的len就够了, 不需要管下面的, 所以不更新不影响结果(因为我们每次计算面积只取tr[1].len)
当cnt从1到0, 那么只需要剔除当前归0的”该一整段”区间对len的影响就行了, 考虑到有可能存在”该一整段”的子区间还在发挥作用(y轴上长度较小且还没到达矩形右边线段的矩形)那这个子区间的len是不需要改变
既然不pushdown, 那么会由于不pushdown下去没更新子节点, 导致pushup产生错误吗?
答: 不会. 分类讨论:
当cnt从任何数到非0数: 根据modify代码, 只有在整段都被覆盖的情况下才会修改当前cnt值, 然后对当前tr[u].cnt=非零值的节点进行pushup, 这样会直接进入pushup的第一个if, 当前u节点的len会被正确地直接计算为整段的长度, 所以哪怕之前的不pushdown下去, 这种情况下的len计算也还是正确的.
当cnt从1到0, 同上根据modify代码, 只有在整段都被覆盖的情况下才会修改当前cnt值, 然后对当前tr[u].cnt=0的节点进行pushup, 把tr[u].len赋值为子节点len的加和或者0(不存在子节点). 我们考虑几何图像, 明显当前情况是出现了矩形右边线段, 所以现在把当前节点整段对len的贡献剔除掉, 所以这样的pushup也是正确的
综上, 我们不需要pushdown也不会影响结果和pushup的正确性
而对于线段树具体如何存储怎么操作:
建立了线段树, 我们再考虑实际线段要怎么存进去, 假设我们存储的是点. 那么当前最小节点是类似[1, 1], [2, 2]这样,
显然他们单独的长度都是0(因为是点)
假设离散化后的ys为 [5.1, 6.2, 8.5, 10.8, …]
考虑线段树内[1, 1], [2, 2]的父节点[1, 2], 我们若需要[1, 2]这个节点的len能够
映射离散化区间里面6.2到8.5的距离的话, 即需要tr[x].r找到8.5, tr[x].l找到6.2 这样看着是可行的
但是这样的话, 当线段树被切分成单位点的时候, 比如若线段树根节点是[0, 2]
要查询[1,2]的长度, 按照线段树国际惯例, 我们下一步会切成[0, 1]和[2, 2], 那么可以发现, 这里我们弄断了两点之间的线段, 且很难继续记录他们之间的关联, 导致难以进行下去
所以, 我们换一种映射方法, 我们考虑令线段树的最小单位是映射相邻两点之间的线段:
同样假设离散化后的ys为 [5.1, 6.2, 8.5, 10.8, …]
考虑线段树区间[0, 0], 我们需要它映射到5.1~6.2这个区间, 同理[1, 1]映射[6.2, 8.5] …
那么, 我们每个线段树最小单位映射的长度, 就应该是ys[tr[t].r + 1] - ys[tr[t].l] 即可
很容易看出, 该做法可以推到更上层的节点也不会出错
*/
代码:
#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
typedef unsigned long long ull;
typedef pair<int, int> PII;
int lowbit(int x) { return x & (- x); }
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
const int mod = 1e9 + 7;
const int N = 100010;
int n;
struct Segment
{
double x, y1, y2;
int k;
bool operator< (const Segment& t)const
{
return x < t.x;
}
} seg[N * 2];
struct Node
{
int l, r;
int cnt;
double len;
} tr[N * 8];
vector<double> ys;
int find(double y)
{
return lower_bound(ys.begin(), ys.end(), y) - ys.begin();
}
void pushup(int u)
{
/*
线段树中每个“点”的含义是[x, x + 1]这段区间。所以线段树中u这个节点表示的是[tr[u].l, tr[u].l + 1], [tr[u].l + 1, tr[u].l + 2], ..., [tr[u].r, tr[u].r + 1]这些小区间
*/
//cnt是完全覆盖区间 直接计算长度
if (tr[u].cnt) tr[u].len = ys[tr[u].r + 1] - ys[tr[u].l];
else if (tr[u].l != tr[u].r) // 不被完全覆盖则用儿子的长度更新
{
tr[u].len = tr[u << 1].len + tr[u << 1 | 1].len;
}
else tr[u].len = 0;
}
void build(int u, int l, int r)
{
tr[u] = {l, r, 0, 0};
if (l != r)
{
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
}
void modify(int u, int l, int r, int k)
{
if (tr[u].l >= l && tr[u].r <= r)
{
tr[u].cnt += k;
pushup(u);
}
else
{
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) modify(u << 1, l, r, k);
if (r > mid) modify(u << 1 | 1, l, r, k);
pushup(u);
}
}
int main()
{
int T = 1;
while (scanf("%d", &n), n)
{
ys.clear();
for (int i = 0, j = 0; i < n; i ++ )
{
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
seg[j ++ ] = {x1, y1, y2, 1};
seg[j ++ ] = {x2, y1, y2, -1};
ys.push_back(y1), ys.push_back(y2);
}
sort(ys.begin(), ys.end());
ys.erase(unique(ys.begin(), ys.end()), ys.end());
build(1, 0, ys.size() - 2);
sort(seg, seg + n * 2);
double res = 0;
for (int i = 0; i < n * 2; i ++ )
{
if (i > 0) res += tr[1].len * (seg[i].x - seg[i - 1].x);
modify(1, find(seg[i].y1), find(seg[i].y2) - 1, seg[i].k);
}
printf("Test case #%d\n", T ++ );
printf("Total explored area: %.2lf\n\n", res);
}
return 0;
}