DataWorks快速入门

DataWorks基于MaxCompute、Hologres、EMR、AnalyticDB、CDP等大数据引擎,为数据仓库、数据湖、湖仓一体等解决方案提供统一的全链路大数据开发治理平台。本文以DataWorks的部分核心功能为例,指导您使用DataWorks接入数据并进行业务处理、周期调度以及数据可视化。

入门简介

通过本快速入门,您可以快速完成以下操作。

  1. 数据同步:通过DataWorks的数据集成模块,创建离线同步任务,将业务数据同步至大数据计算平台(如MaxCompute数仓)。

  2. 数据清洗:在DataWorks的数据开发模块中,对业务数据进行处理、分析和挖掘。

  3. 数据展示:在DataWorks的数据分析模块中,将分析结果转化为图表,便于业务人员理解。

  4. 周期性调度:为数据同步和数据清洗流程配置周期性调度,使其定时执行。

image

前提条件

为确保本教程可以顺利进行,推荐使用阿里云主账号或具备AliyunDataWorksFullAccess权限的RAM用户。具体操作,请参见准备阿里云账号(主账号)准备RAM用户(子账号)

说明

DataWorks提供了完善的权限管控机制,支持在产品级与模块级对权限进行管控,如果您需要更精细的权限控制,请参见DataWorks权限体系功能概述

准备工作

  1. 创建工作空间并绑定资源组。

    本教程以华东2(上海)地域为例,介绍DataWorks快速入门,您需要登录DataWorks管理控制台,切换至华东2(上海)地域,查看该地域是否开通DataWorks。

    说明

    本教程以华东2(上海)为例,在实际使用中,请根据实际业务数据所在位置确定开通地域:

    • 如果您的业务数据位于阿里云的其他云服务,请选择与其相同的地域。

    • 如果您的业务在本地,需要通过公网访问,请选择与您实际地理位置较近的地域,以降低访问延迟。

    • 如果未开通,单击0元组合购买,通过组合购买,一站式完成DataWorks开通、默认空间创建以及资源组绑定。

      新开通DataWorks步骤

    • 如果已开通,则需要手动创建本次教程使用的工作空间、资源组及资源组绑定操作。

      手动创建工作空间、资源组及资源组绑定操作

  2. 为资源组绑定的VPC配置EIP。

    本教程使用的电商平台公开测试业务数据需要通过公网获取,而上一步创建的通用型资源组默认不具备公网访问能力,需要为资源组绑定的VPC配置公网NAT网关,添加EIP,使其与公开数据网络打通,从而获取数据。

    配置步骤

操作步骤

本文以如下场景为例,指导您快速体验DataWorks的相关功能:

假设某一电商平台将商品信息、订单信息存储在MySQL数据库中,需要定期对订单数据进行分析,通过可视化的方式查看每日最畅销商品类目排名表。

步骤一:数据同步

  1. 创建数据源。

    DataWorks通过创建数据源的方式,接入数据来源和数据去向,因此,本步骤需要分别创建MySQL和MaxCompute两个数据源

    • MySQL数据源,用于连接数据来源(存储业务数据的MySQL数据库),为本教程提供原始业务数据。

      说明

      您无需准备本教程使用的原始业务数据,为方便测试和学习,DataWorks为您提供测试数据集,相关表数据已存储在公网MySQL数据库中,您只需创建MySQL数据源接入即可。

      创建MySQL数据源步骤

    • MaxCompute数据源,用于连接数据去向(MaxCompute数仓),将MaxCompute数据源绑定至数据开发后,能够为本教程提供数据存储和计算能力。

      • 如果您的项目空间中存在已添加的MaxCompute数据源,则无需进行此步骤

      • 如果您的项目空间中没有添加MaxCompute数据源,在参考如下步骤创建。

        创建MaxCompute数据源步骤

  2. 数据开发绑定MaxCompute数据源。

    需要先将MaxCompute数据源绑定至数据开发,后续才能在数据开发模块中对MaxCompute的数据进行处理。

    1. 在左上角单击

      image

      > 全部产品 > 数据开发与运维 > DataStudio(数据开发)

    2. 在左侧导航栏单击数据源

      image

      ),找到已创建的MaxCompute数据源,单击绑定

      说明

      如果您的数据开发模块已绑定了MaxCompute数据源,则无需进行此步骤

      image

  3. 创建虚拟节点,用于统筹管理整个电商平台销售数据分析的业务流程。该节点为空跑任务,无须编辑代码。

    在左侧导航栏单击数据开发,找到业务流程 > Workflow,然后右键Workflow,选择新建节点 > 通用 > 虚拟节点,自定义节点名称,本教程以Workshop为例。

    image

  4. 创建离线同步任务。

    本教程使用的测试数据涉及两张表(商品信息源表item_info和订单信息源表trade_order),这两张表存储于MySQL数据源关联的MySQL数据库中,本步骤需要分别创建两个离线同步节点(节点名称以ods_item_infoods_trade_order为例),用于将item_info表和trade_order表同步至MaxCompute数据源关联的MaxCompute数仓中,然后再进行后续数据开发。

    1. 创建ods_item_info离线同步节点

    2. 创建ods_trade_order离线同步节点

步骤二:数据清洗

数据已从MySQL同步至MaxCompute后,获得两张数据表(商品信息表ods_item_info和订单信息表ods_trade_order),您可以在DataWorks的数据开发模块对表中数据进行清洗、处理和分析,从而获取每日最畅销商品类目排名表。

说明

  • 运行ODPS节点时,会展示费用预估,由于每一个ODPS节点配置的SQL中同时包括CREATEINSERT语句,INSERT时,表还未创建,因此可能提示预估费用失败,请忽略此报错,直接运行即可。

  • DataWorks提供调度参数,可实现代码动态入参,您可在SQL代码中通过${变量名}的方式定义代码中的变量,并在调度配置 > 调度参数处,为该变量赋值。调度参数支持的格式,详情请参见调度参数支持的格式。本示例SQL中使用了调度参数${bizdate},表示业务日期为前一天。

  1. 创建dim_item_info节点。

    基于ods_item_info表,处理商品维度数据,产出商品基础信息维度表dim_item_info

    操作步骤

  2. 创建dwd_trade_order节点。

    基于ods_trade_order表,对订单的详细交易数据进行初步清洗、转换和业务逻辑处理,产出交易下单明细事实表dwd_trade_order

    操作步骤

  3. 创建dws_daily_category_sales节点。

    基于dwd_trade_order表和dim_item_info表,对DWD层经过清洗和标准化的明细数据进行汇总,产出每日商品类目销售汇总表dws_daily_category_sales

    操作步骤

  4. 创建ads_top_selling_categories节点。

    基于dws_daily_category_sales表,产出每日最畅销商品类目排名表ads_top_selling_categories

    操作步骤

步骤三:数据展示

您已经将从MySQL中获取的原始测试数据,经过数据开发处理,汇总于表ads_top_selling_categories中,现在可查询表数据,查看数据分析后的结果。

  1. 在左上角单击

    image

    > 全部产品 > 数据分析 > SQL查询

  2. 在我的文件后单击

    image

    > 新建文件,自定义文件名后单击确定

    image

  3. 在SQL查询页面,配置如下SQL。

    SELECT * FROM ads_top_selling_categories WHERE pt=${bizdate};
  4. 单击顶部的运行(

    image

    ),根据页面提示,在右上角选择MaxCompute数据源后单击确定,然后在费用预估页面,单击运行

  5. 在查询结果中单击

    image

    ,查看可视化图表结果,您可以单击图表右上角的

    image

    自定义图表样式。自定义图表样式的更多信息,请参见增强分析(卡片和报告)

    image

  6. 您也可以单击图表右上角保存,将图表保存为卡片,然后在左侧导航栏单击卡片

    image

    )查看。

    image

步骤四:周期性调度

通过完成前文操作步骤,您已经获取了前一天各类商品的销售数据,但是,如果需要每天获取最新的销售数据,则可以为数据开发中各任务节点配置周期任务,使其周期性定时执行。

说明

为简化操作,快速入门教程以可视化方式为业务流程配置调度,DataWorks还支持手动精细化配置,各任务节点支持根据SQL自动解析上下游依赖,调度配置的更多信息,请参见任务调度配置

  1. 在左上角单击

    image

    > 全部产品 > 数据开发与运维 > DataStudio(数据开发)

  2. 双击业务流程Workflow,在画布中移动各节点位置并按下图拖拽出各节点的上下游依赖关系。

    image

  3. 单击右侧流程参数,配置参数名称bizdate参数值或表达式$bizdate,单击保存

    image

  4. 双击虚拟节点(Workshop),配置如下周期调度参数后,单击顶部的保存

    image

    )。

    说明

    其他参数保持默认即可。

    image

  5. 切换至Workflow业务流程页签,单击顶部的运行,参数bizdate填写为前一天(例如今天为20240731,则此处填写为20240730),测试所有流程是否均能成功运行。

    image

  6. 所有节点均能成功运行后,点击顶部的提交,将流程中所有节点提交至运维中心。

    image

  7. 在左上角单击

    image

    > 全部产品 > 数据开发与运维 > 运维中心(工作流)

  8. 周期任务运维 > 周期任务中即可看到已创建的周期任务。

    说明

    如需展示如下图的所有上下游依赖节点,请右键单击Workshop节点,选择展开子节点 > 四层

    image

### 回答1: DataWorks教程是阿里云推出的一个数据集成与分析工具的学习教程,主要面向希望学习并使用DataWorks的用户。DataWorks是阿里云提供的一站式大数据智能开发与管理的平台,可以帮助用户实现数据采集、清洗、计算和可视化等功能。 DataWorks教程主要包括以下几个方面的内容: 1. 平台介绍:教程会对DataWorks的功能和特点进行详细介绍,包括数据仓库、数据集成、智能建模等模块的使用方法和应用场景。 2. 环境搭建:教程会指导用户如何在阿里云上创建自己的DataWorks项目,并完成基本的环境搭建工作,包括项目配置、连接数据存储等。 3. 数据集成:教程会介绍如何使用DataWorks进行数据的采集和清洗,包括创建数据源、定义数据表、数据转换等操作。 4. 数据计算:教程会讲解如何使用DataWorks进行数据计算和分析,包括构建数据处理工作流、使用SQL语言进行数据查询和处理。 5. 可视化分析:教程会介绍如何使用DataWorks进行数据的可视化分析,包括创建报表和仪表盘、制作可视化图表等。 通过DataWorks教程的学习,用户可以掌握DataWorks的基本使用方法,能够熟练进行数据集成和分析操作,提高数据处理的效率和质量。同时,教程还提供实际案例的演示和练习,让用户能够快速上手并灵活运用DataWorks来解决实际问题。对于想要在大数据领域发展的用户来说,DataWorks教程无疑是必备的学习资料。 ### 回答2: DataWorks是阿里云推出的一款完全托管的大数据开发和运维平台。它提供了一套全面的数据集成、数据开发、数据运维和数据管理的解决方案,能够帮助用户实现从数据采集、清洗到分析和可视化的全流程数据处理。 首先,DataWorks具备强大的数据集成能力。它支持多种数据源的连接,如云数据库、关系型数据库、NoSQL数据库等,可以实现数据的实时、增量或全量抽取。同时,它还提供了数据同步、数据迁移等功能,方便用户进行数据的交换和迁移。 其次,DataWorks提供了一套易于使用的数据开发工具。用户可以通过可视化的界面进行数据的准备工作,如数据清洗、数据转换等操作。同时,它还支持用户使用SQL、Python等编程语言进行数据处理,满足不同用户的需求。 此外,DataWorks还提供了全面的数据运维和管理功能。用户可以在平台上进行任务调度、任务监控、任务告警等操作,确保数据处理的稳定性和准确性。同时,它还提供了数据质量管理、元数据管理、权限管理等功能,方便用户对数据进行监控和管理。 最后,DataWorks还支持数据的可视化展示。用户可以通过平台上的数据分析工具,将处理后的数据进行可视化展示,生成丰富的数据报表和图表,提供更直观的数据分析。此外,用户还可以将数据导出到其他工具或应用程序中进行进一步的分析和应用。 总之,DataWorks是一款功能全面、易于使用的大数据开发和运维平台,为用户提供了方便快捷的数据处理解决方案,帮助用户更高效地进行数据分析和应用。 ### 回答3: dataworks教程是针对阿里云数据集成、数据分析的在线学习资源。它提供了一系列详细的教学材料和案例,帮助用户快速上手和掌握dataworks的使用方法和技巧。 dataworks教程的内容主要包括以下几个方面: 1. 数据集成:介绍了数据集成的概念、流程和常用功能。通过学习教程,用户可以了解如何使用dataworks进行数据抽取、清洗和转换,实现数据的灵活接入和处理。 2. 数据开发:讲解了使用dataworks进行数据开发的基本操作和开发流程。用户可以学习如何使用dataworks构建数据处理和分析的工作流程,通过可视化操作完成复杂的数据处理任务。 3. 数据调度:介绍了dataworks的调度功能,帮助用户实现定时、循环等灵活的任务调度和自动化运维。用户可以学习如何使用dataworks实现数据的定时抽取、转换和加载,为企业数据的实时更新提供支持。 4. 数据开发的最佳实践:通过一系列实际案例,教程展示了如何利用dataworks进行数据分析和处理。用户可以学习到如何使用dataworks实现实时的交互式分析、数据可视化和数据挖掘。 通过学习dataworks教程,用户可以全面了解和掌握dataworks的各项功能和使用技巧,提高数据开发和分析的效率。无论是数据工程师、数据分析师还是企业数据管理人员,都可以受益于dataworks教程,更好地应用和管理企业的数据资产。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

soso1968

你的鼓励是我继续创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值