算法导论第一部分学习笔记

算法是处理数据的计算过程,在计算中明智的使用时间、空间等资源

数据结构是储存数据的方式,主要目的是为了满足占用空间、查找速度、插入速度中的一部分

循环不变式

从一道有趣的题目开始

布口袋中有黑,白两色小球,现将手放入袋中每次摸出两个,如果两球同
色就都不放回袋中,如果两球异色就将白球放回,由于每次至少减少一
个,所以袋中的球必然越来越少。现问:如果袋中最后剩下一个球,此球
的颜色与开始时袋中黑、白球的个数有什么关系?按照一般的思路,此题
非常复杂,难以解决。多次重复摸球及放回的动作构成了一个循环过程。
如果我们有意识地寻找循环过程中不变的性质,就会发现,在循环过程中,
白球个数的奇偶性保持不变,因为,每次取出的白球的个数或是零或是2.因
此,如果开始时白球的个数为奇数,那么剩下的一球为白球。如果开始时白
球的个数为偶数,那么剩下的一球为黑球

循环不变式的作用是让我们理解并且证明算法的正确性(因为程序只要不是O(1)的,都可以看做循环的变种)

循环不变式总的来说是一个判断语句,她的主要性质如下:

1,初始化:在循环开始之前,循环不变式判断为true
2,保持:在一次迭代的前后,她都判断为true
3,终止:在循环终止时,不变式为我们提供一个有用的性质

举几个例子:
1,在算法导论中,插入排序的循环不变式为数组A[1,…,j]都是已经排好序的数组,在开始到结束都满足这个性质
2,题目2.1-3,循环不变式为A[1,…,j]中都不包含val
3,在上面那道有趣的题目中,循环不变式为白球个数的奇偶性保持不变

求解递归式

当一个函数包含对其自身的调用时,我们就可以使用一个递归式来表示,例如:
在这里插入图片描述
那么如何算出形如该函数的时间复杂度呢,算法导论给出了三个方法:主方法、递归树法、代入法

代入法

根据过往的经验来猜测递归式的解O(x),同时,如果可以寻找一个数c,证明T(x) <= cO(x),则可以确定界

例如:T(n) = 2T(n/2)+n,我们猜测解是O(nlgn)
代入可知T(n) <= 2c(n/2)lg(n/2)+n <= cnlgn-cnlg2+n = cnlgn-cn+n
因此T(n) <= O(nlgn),所以我们的猜测成立

递归树法

将递归式转化为树形结构,树中的结点代表在不同递归层次付出的代价,最后利用对和式限界的技术来解出递归式

在第二章分析分治算法的时候就用到了递归树法,比如求解下面递归式
在这里插入图片描述
画出图像:
在这里插入图片描述
每一层每个节点的数字代表了执行此函数使用的代价,而右边代表了这一层的总代价,将右边每一层代价加起来就找到了这个递归树的总代价

注意,最后一层的时间复杂度是常数,所以只要计算出有多少的节点就行,因为树的深度为log4n,每层数目是上层的三倍,所以得出nlog43
在这里插入图片描述
我们通过找规律就能直接得出这个公式,甚至可以把公式背下来(就是下面介绍的主方法),很多情况下通过递归树是解决不了问题的。做过后面练习题就知道,最后的解会出现形如3^(lgn+1)这种鬼东西,完全没有意义

因此在求解之前,需要先进行缩放,我们可以以此来确定解的上界或者下界

对T(n) = T(n/3) + T(2*n/3) + O(n),时间复杂度是nlgn
对T(n) = T(n/2) + O(n ^ 2),时间复杂度为 n ^ 2

主方法

主方法是一个公式,形如T(n) = a * T(n/b) + f(n)的递归式都可以使用主方法求解

主方法原理式使用递归树解出适用于任意a、b和f(n)的统一解,计算所有中间结点和叶子结点的代价和,推导出简单的结果
在这里插入图片描述
图中说总代价等于一个奇怪的玩意,但是先辈们已经将这个结论简化了,他们发现上层代价与底层总代价的大小关系决定了递归式的解,因此只要直接记住结论即可,我们记中间累加式为g(n):
在这里插入图片描述

1,如果底层代价较大的话,g(n)以及递归式的解就为底层代价在这里插入图片描述

2,如果两个一样大,g(n)为底层代价乘lgn在这里插入图片描述
3,如果f(n)比较大,即上层的代价大的话,需要满足对于某个常数c<1和所有足够大的n满足如下公式
在这里插入图片描述
此时,可以得出
在这里插入图片描述

渐进符号

我们在算法书上最常见的是Θ符号(读作/ˈθiːtə/,theta),它定义了上界和下界,f(n)位于上界和下界之间,且包含等号,使用官方语言说是:

若存在正常数c1、c2,使得对于足够大的n, f (n)能“夹入”c1g(n)和c2g(n)之间,则f (n)属于集合Θ(g(n))

其他四个分别是:
O,大Oh,定义了函数的上界,不定义函数的下界;
o,小Oh,定义了函数的上界,不过它不包含等于,是一种不精确的上界,比如:2n = o(n^2),2n != o(n);
Ω,大Omega,定义了函数的下界,不定义函数的上界;
ω,小Omega,同样定义的是下界,只不过不包含等于,是一种不精确的下界

但是,平时我们使用的最多的却是O。因为在有些场景Θ是不正确的,描述算法时,算法的最好复杂度可能低于这个界,例如插入排序的时间复杂度是O(N ^ 2)而不是Θ(N ^ 2),因为其最好时为Θ(N)

优雅的写法

收录在第一部分遇到的题目的简洁而易读的写法

多重判断拆分

某些问题需要进行嵌套判断,寻找到一些可以移除的性质一层一层进行处理

eg:
考虑把两个n位二进制整数加起来的问题,这两个整数分别存储在两个n元数组A和B中。这两个整数的和应按二进制形式存储在一个(n+1)元数组C中

ADD-BINARY(A, B):
  C = new integer[A.length + 1]

  carry = 0
  for i = 1 to A.length
      C[i] = (A[i] + B[i] + carry) % 2  // remainder
      carry = (A[i] + B[i] + carry) / 2 // quotient
  C[i] = carry

  return C

哨兵牌

为了避免在一些判断,我们在适当的时候加入哨兵牌,它包含一个特殊的值,用于简化代码

eg:
合并两个已排序的子序列以产生已排序的新序列

这里我们使用∞作为哨兵值,结果每当显露一张值为∞的牌,它不可能为较小的牌,除非两个序列都已经显露出其哨兵牌

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值