- 博客(1)
- 收藏
- 关注
原创 2021-07-10
机器学习西瓜书–第二章总结 1.经验误差与过拟合: (1)所谓的误差,就是学习器的实际预测输出与样本的真实输出之间的差异称为“误差”,学习器在训练集上的误差称为“训练误差”或“经验误差”,在新样本上的误差称为“泛化误差”。 (2)我们所需要的就是在新样本上能表现得很好的学习器,但是,当学习器的泛化能力很强时,就会出现过拟合现象,出现过拟合的学习器可能已经把训练样本的自身的一些特点当作了所有潜在样本都会具有的一般性质。 例如:我们做一个小狗的识别学习器,泛化能力很强时,当我们把一张猫咪的图片当作输入数据,此小
2021-07-12 13:27:07 142
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人