自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 解决PermissionError: [Errno 13] Permission denied: ‘./data\\mnist\\train-images-idx3-ubyte‘

昨天在复现github上的一个代码的时候,遇到过这个这个问题。核心代码是使用手写数据集,使用KNN算法做分类问题。首先将手写数据集的图片格式转化成数字形式并存储到csv文件中。出问题之前代码中路径是这样的:(忽略这里的convert,它是上面定义好的一个函数)此时会报错PermissionError:[Errno 13] Permission denied。将代码更改为:这样问题就解决了。其实这是一个很简单的问题,手写数据集它包含4个文件夹,每个文件夹下面又各有一个.idx.

2022-01-04 14:13:26 7850 2

原创 关于交叉验证的一些说明

1.交叉验证的分类保留交叉验证:也称简单交叉验证。随机将样本集分为训练集和验证集,比例通常是8:2,或者7:3,在训练集上训练得到模型,在验证集上对模型进行评估。上面步骤可以重复多次,最后选出一个误差最小的模型。 K折交叉验证:将样本集分成k份,每次取(k-1)份用来训练模型,用剩余的一份用来验证模型。该步骤同样可以重复多次,最后选出损失函数评估最优的模型或者参数。 留一交叉验证:这种方法是K折交叉验证的特例,假设样本集的个数是N,此时令k=N,即一份等于一个样本,每次取(N-1)个样本用来训练模型

2021-12-25 14:38:18 3599 5

原创 Pandas学习记录

pandas 中文文档

2021-12-23 15:56:08 956

原创 感知机算法python实现

感知机(perceptron)是二分类的线性分类模型,其中输入是实例的特征向量,输出是类别,类别取+1和-1二值。感知机的目标是求出一个超平面将训练数据进行线性划分。下面基于鸢尾花数据进行实现感知机算法。简单介绍下鸢尾花数据:iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris data set。iris数据集是一个150行5列的二维表。具体来说是150个样本,每个样本是数据集中的每行数据,每个样本有4个特征(前4列),1个标签(第五列)。4个特征分别是花萼长度、花

2021-12-23 15:40:47 3284

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除