
Kafka
文章平均质量分 71
kafka。消息队列。
Senkorl.
服务端开发工程师。技术类爱好者。科技产品爱好者。游戏爱好者。
展开
-
为什么要使用消息队列
解耦:降低系统组件之间的耦合,使得系统更加灵活和易扩展。削峰填谷:通过缓冲瞬时高峰流量,避免系统因瞬时流量过大而崩溃。异步处理:提升系统响应速度,避免长时间阻塞。容错与持久化:确保消息不会因系统故障丢失,增强系统的容错能力。实时数据处理:对大量数据流进行实时处理,适用于大数据和数据分析场景。多订阅与广播:支持一个生产者对应多个消费者的模式,实现消息的多路传播。提升性能与并发:通过分布式并发消费提升系统处理能力。原创 2025-04-09 00:35:33 · 863 阅读 · 0 评论 -
【kafka】消费调优
使用 Kafka 监控工具(如 Confluent Control Center、Prometheus + Grafana)监控消费者的性能,发现瓶颈并进行调整。:增加消费者实例,利用多个消费者并行处理消息。:确保消费者能够在适当的时间内处理消息,防止因超时导致的重新平衡。通过这些调优策略,可以提高 Kafka 消费者的性能和稳定性。,设置一次从 Kafka 拉取多条消息,减少网络往返次数。,根据业务需求选择适当的偏移重置策略。:优化消息处理逻辑,确保消费者在。,优化消息拉取的效率。原创 2025-04-09 06:00:00 · 102 阅读 · 0 评论 -
【kafka】消费者策略、Rebalance机制、Offset存储机制
消费者策略:Kafka 允许单独消费者或消费者组共同消费消息,消费者组内部可以根据不同的分区分配策略来分配Partition。Rebalance 机制:消费者组在消费者数量变化或分区变化时会触发 Rebalance。Rebalance 是分区重新分配的过程,但频繁的 Rebalance 会影响消费的稳定性。Offset 存储机制:Kafka 提供多种 Offset 存储方式,主要通过 Kafka 自身的内置存储来跟踪消费进度,并提供多种 Offset 提交和重置策略,确保消费的灵活性和可靠性。原创 2025-04-09 06:00:00 · 904 阅读 · 0 评论 -
【kafka】架构原理及存储机制
Kafka 通过分布式架构、多副本机制、Leader 选举和顺序写磁盘的设计,确保了系统的高可用性、可靠性和高效性。Kafka 的存储机制基于分区日志的顺序写入和段存储,结合日志压缩和消息保留策略,提供了灵活的数据存储和读取功能。在现代分布式系统中,Kafka 是一种可靠的消息队列和流处理平台。原创 2025-04-08 17:00:00 · 627 阅读 · 0 评论 -
【kafka】如何保证高可用
Kafka 作为一个分布式消息队列系统,设计了多种机制来保证其。这些机制确保在部分节点出现故障的情况下,集群依然能够正常工作,数据不会丢失。原创 2025-04-08 16:45:00 · 518 阅读 · 0 评论 -
【kafka】高性能高效率的原因
每个分区的数据存储和处理都是独立的,这样就可以通过水平扩展来增加吞吐量和容错能力。每个段都是一个独立的文件,这使得日志文件的管理更加高效,并且可以更容易地进行压缩和删除旧数据。这使得消费者可以根据自己的速度来拉取数据,避免了因为生产者的速度问题导致的性能瓶颈。它使用了类似于LSM树的结构来处理写入和读取,减少了存储和读取的开销。这些设计和技术使得 Kafka 能够处理大规模的数据流,并提供高吞吐量和低延迟的数据处理能力。:Kafka 支持批量发送和接收消息,这降低了网络和磁盘的开销,提高了吞吐量。原创 2025-04-08 12:04:15 · 202 阅读 · 0 评论