算法 Hw9

1 Scheduling with profits and deadlines

1

决策问题表述:

给定一个利润值 P P P,是否存在一个任务调度方案使得完成所有任务的总利润至少为 P P P


2

在 NP 类中:
给定一个任务调度方案,可以在多项式时间内验证该方案的总利润是否至少为 P P P。验证过程包括检查每个任务是否在截止日期前完成,并计算总利润。因此,该问题在 NP 类中。

对于 NP 完全性:
- 给定一个 0/1 背包问题实例,其中有 n n n 个物品,每个物品有一个重量 w i w_i wi 和价值 v i v_i vi,以及一个总重量限制 W W W

  • 对应于调度问题中的每个任务 a j a_j aj,设置其处理时间 t j = w i t_j = w_i tj=wi,利润 p j = v i p_j = v_i pj=vi,并设置截止日期 d j = W d_j = W dj=W,保证任务必须在总时间 W W W 内完成。
  • 利润值 P P P 设为背包问题中的价值总和的要求。

通过归约,若能在调度问题中找到一个利润至少为 P P P 的方案,则在 0/1 背包问题中可以找到一个总价值至少为 P P P 且总重量不超过 W W W 的物品选择方案。因此,调度问题的决策版本是 NP 完全的。


3

  • 状态定义:设 d p [ t ] [ k ] dp[t][k] dp[t][k] 表示在总时间 t t t 内,选择前 k k k 个任务能获得的最大利润。

  • 状态转移方程:
    对于每个任务 a j a_j aj,有两种选择:

    • 不选择任务 a j a_j aj d p [ t ] [ k ] = d p [ t ] [ k − 1 ] dp[t][k] = dp[t][k-1] dp[t][k]=dp[t][k1]
    • 选择任务 a j a_j aj(前提是 t ≥ t j t \geq t_j ttj t ≤ d j t \leq d_j tdj): d p [ t ] [ k ] = max ⁡ ( d p [ t ] [ k − 1 ] , d p [ t − t j ] [ k − 1 ] + p j ) dp[t][k] = \max(dp[t][k-1], dp[t-t_j][k-1] + p_j) dp[t][k]=max(dp[t][k1],dp[ttj][k1]+pj)
  • 初始状态:

    • d p [ 0 ] [ 0 ] = 0 dp[0][0] = 0 dp[0][0]=0,表示没有时间且没有任务时的利润为 0。
  • 算法步骤:

    • 初始化 d p dp dp 数组为 0。
    • 遍历所有任务,根据上述状态转移方程更新 d p dp dp 数组。
    • 最终检查 d p [ T ] [ n ] dp[T][n] dp[T][n] 是否大于等于 P P P,其中 T T T 是计算机的总时间。

4

  • 状态定义:设 d p [ t ] dp[t] dp[t] 表示在总时间 t t t 内能获得的最大利润。

  • 状态转移方程:
    对于每个任务 a j a_j aj,有两种选择:

    • 不选择任务 a j a_j aj d p [ t ] = d p [ t ] dp[t] = dp[t] dp[t]=dp[t]
    • 选择任务 a j a_j aj(前提是 t ≥ t j t \geq t_j ttj t ≤ d j t \leq d_j tdj): d p [ t ] = max ⁡ ( d p [ t ] , d p [ t − t j ] + p j ) dp[t] = \max(dp[t], dp[t-t_j] + p_j) dp[t]=max(dp[t],dp[ttj]+pj)
  • 初始状态:

    • d p [ 0 ] = 0 dp[0] = 0 dp[0]=0,表示没有时间时的利润为 0。
  • 算法步骤:

    • 初始化 d p dp dp 数组为 0。
    • 遍历所有任务,根据上述状态转移方程更新 d p dp dp 数组。
    • 最终 d p [ T ] dp[T] dp[T] 即为最大利润,其中 T T T 是计算机的总时间。

5

由于上述动态规划算法是一个精确算法(在多项式时间内找到最优解),因此它的近似比为 1,即它能够找到最优解。


2 Parallel machine

1

考虑所有工作中处理时间最长的工作 J k J_k Jk,其处理时间为 p k = max ⁡ { p j : 1 ≤ j ≤ n } p_k = \max\{p_j : 1 \leq j \leq n\} pk=max{pj:1jn}

由于该工作必须在某台机器上连续运行 p k p_k pk 时间单位,且在此期间不能有其他工作在同一台机器上运行,因此该工作的完工时间至少为 p k p_k pk

因此,最优完工时间 C max ∗ C^*_{\text{max}} Cmax 必须至少为 p k p_k pk,即 C max ∗ ≥ max ⁡ { p k : 1 ≤ k ≤ n } C^*_{\text{max}} \geq \max\{p_k : 1 \leq k \leq n\} Cmaxmax{pk:1kn}


2

设所有工作的总处理时间为 P = ∑ k = 1 n p k P = \sum_{k=1}^{n} p_k P=k=1npk

对于最优调度,每台机器在总时间 C max ∗ C^*_{\text{max}} Cmax 内处理一部分工作。

由于共有 m m m 台机器,总的工作负载 P P P 必须分配给这 m m m 台机器。因此,平均每台机器的负载为 P m \frac{P}{m} mP

在最优调度中,任意机器的完工时间不能少于其分配到的工作负载时间,即最优完工时间 C max ∗ C^*_{\text{max}} Cmax 不能小于平均机器负载 P m \frac{P}{m} mP,即 C max ∗ ≥ 1 m ∑ k = 1 n p k C^*_{\text{max}} \geq \frac{1}{m} \sum_{k=1}^{n} p_k Cmaxm1k=1npk


3

def GreedyParallelScheduling(jobs, m):
    # jobs 是一个由元组 (p_k, job_id) 组成的作业列表
    # m 是机器的数量

    # 初始化了一个大小为m的空列表schedules,
    # 用于记录每台机器分配的作业
    schedules = [[] for _ in range(m)]

    # 初始化了一个大小为m的数组machine_completion_times,
    # 用于记录每台机器的完工时间,初始值为0
    machine_completion_times = [0] * m

    # 对作业列表按照处理时间的非递增顺序进行排序
    jobs.sort(reverse=True, key=lambda x: x[0])

    # 对每个已排序的作业进行调度
    for (p_k, job_id) in jobs:
        # 找到完工时间最小的机器 Mi
        min_machine = machine_completion_times.index(min(machine_completion_times))

        # 将作业分配给机器 Mi
        schedules[min_machine].append(job_id)

        # 更新机器 Mi 的完工时间,增加该作业的处理时间
        machine_completion_times[min_machine] += p_k

    return schedules

运行时间:

  • 初始化和读取输入需要 O ( n ) O(n) O(n) 时间。
  • 对作业按处理时间排序需要 O ( n log ⁡ n ) O(n \log n) O(nlogn) 时间。
  • 遍历每个作业并找到具有最小结束时间的机器需要 O ( n log ⁡ m ) O(n \log m) O(nlogm) 时间,因为可以使用最小堆来跟踪机器的结束时间。

总体运行时间为 O ( n log ⁡ n + n log ⁡ m ) = O ( n log ⁡ n ) O(n \log n + n \log m) = O(n \log n) O(nlogn+nlogm)=O(nlogn),因为通常情况下 n ≥ m n \geq m nm


4

设所有工作的总处理时间为 P = ∑ k = 1 n p k P = \sum_{k=1}^{n} p_k P=k=1npk,处理时间最长的工作为 p max = max ⁡ { p k : 1 ≤ k ≤ n } p_{\text{max}} = \max\{p_k : 1 \leq k \leq n\} pmax=max{pk:1kn}

在贪心算法中,任何时刻将未分配的工作分配给当前空闲时间最少的机器,这种策略确保每台机器的负载是尽可能均衡的。

假设最坏情况下某台机器上的负载时间为 L L L,即 L ≤ P m + p max L \leq \frac{P}{m} + p_{\text{max}} LmP+pmax
其中, P m \frac{P}{m} mP 是平均每台机器分配到的负载时间, p m a x p_{max} pmax 是任何单个工作可能增加的最大负载时间。

因此,贪心算法的完工时间 C m a x C_{max} Cmax 满足
C max ≤ 1 m ∑ k = 1 n p k + max ⁡ { p k : 1 ≤ k ≤ n } C_{\text{max}} \leq \frac{1}{m} \sum_{k=1}^{n} p_k + \max\{p_k : 1 \leq k \leq n\} Cmaxm1k=1npk+max{pk:1kn}

由于最优完工时间 C m a x ∗ C^*_{max} Cmax 至少为这两个量中的最大值,即:
C m a x ∗ ≥ max ⁡ ( 1 m ∑ k = 1 n p k , max ⁡ { p k : 1 ≤ k ≤ n } ) C^*_{max} \geq \max \left(\frac{1}{m} \sum_{k=1}^{n} p_k, \max\{p_k : 1 \leq k \leq n\}\right) Cmaxmax(m1k=1npk,max{pk:1kn})

结合以上两个不等式,可得
C m a x ≤ 2 C m a x ∗ C_{max} \leq 2C^*_{max} Cmax2Cmax

因此,贪心算法是一个多项式时间的 2-近似算法。


  • 12
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值