密令

5 篇文章 0 订阅

题目描述
给定一小写字母串s,每次操作你可以选择一个p(1<=p<|s|)执行下述修改中的任意一个:

将s[p]改为其字典序+1的字母,将s[p+1]改为其字典序-1的字母
或 2. 将s[p]改为其字典序-1的字母,将s[p+1]改为其字典序+1的字母

在经过任意多次操作后,串s能变化成多少种字符串?

修改过程中必须保证s是合法的小写字母串(即不能对字母‘a’进行字典

序-1的操作),答案对1000000007(10^9 + 7)取模。

输入格式
【输入格式】

第一行一个整数T,表示数据组数

接下来T行,每行一个小写字母串s。

输出格式
【输出格式】

输出T行,每行一个整数表示答案。

输入输出样例
输入 #1 复制
【样例输入】
3
aaaaaaaaa
ya
klmbfxzb
输出 #1 复制
【样例输出】
0
24
320092793

说明/提示
【数据范围】

对于30%的数据,T=1;|s|<=10 对于60%的数据,T<=10;

对于100%的数据,T<=10000;1<=|s|<=100

~~ 各个字母的ASCII码相加的和始终不变 ~~

即各个字母可任意转化,只要保持其ASCII码总和不变即可

这是本题解题的关键!!!

接下来其实题目就转化为了求背包问题的方案总数

#include <iostream>
#define mo 1000000007
using namespace std;
int t;
string s;
long long f[110][5000];//前i个,和是j的种类数;类似背包选数 
int main()
{
    cin>>t;
    for (int i=0;i<26;i++) f[1][i]=1; //初始化的范围也应该只在(a~z)!! 
    for (int i=2;i<=100;i++)
    {
        f[i][0]=1;
        for (int j=1;j<=2700;j++)
            for (int k=0;k<26;k++) //每次修改只会增加1~26的值(a~z) 
                if (j-k>=0) f[i][j]=(f[i][j]%mo+f[i-1][j-k]%mo)%mo;
    }

    while (t--)
    {
        cin>>s; int sum=0;
        for (int i=0;i<s.size();i++) sum+=s[i]-'a';
        cout<<f[s.size()][sum]%mo-1<<endl;
    }
    return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值