题目描述
给定一小写字母串s,每次操作你可以选择一个p(1<=p<|s|)执行下述修改中的任意一个:
将s[p]改为其字典序+1的字母,将s[p+1]改为其字典序-1的字母
或 2. 将s[p]改为其字典序-1的字母,将s[p+1]改为其字典序+1的字母
在经过任意多次操作后,串s能变化成多少种字符串?
修改过程中必须保证s是合法的小写字母串(即不能对字母‘a’进行字典
序-1的操作),答案对1000000007(10^9 + 7)取模。
输入格式
【输入格式】
第一行一个整数T,表示数据组数
接下来T行,每行一个小写字母串s。
输出格式
【输出格式】
输出T行,每行一个整数表示答案。
输入输出样例
输入 #1 复制
【样例输入】
3
aaaaaaaaa
ya
klmbfxzb
输出 #1 复制
【样例输出】
0
24
320092793
说明/提示
【数据范围】
对于30%的数据,T=1;|s|<=10 对于60%的数据,T<=10;
对于100%的数据,T<=10000;1<=|s|<=100
~~ 各个字母的ASCII码相加的和始终不变 ~~
即各个字母可任意转化,只要保持其ASCII码总和不变即可
这是本题解题的关键!!!
接下来其实题目就转化为了求背包问题的方案总数
#include <iostream>
#define mo 1000000007
using namespace std;
int t;
string s;
long long f[110][5000];//前i个,和是j的种类数;类似背包选数
int main()
{
cin>>t;
for (int i=0;i<26;i++) f[1][i]=1; //初始化的范围也应该只在(a~z)!!
for (int i=2;i<=100;i++)
{
f[i][0]=1;
for (int j=1;j<=2700;j++)
for (int k=0;k<26;k++) //每次修改只会增加1~26的值(a~z)
if (j-k>=0) f[i][j]=(f[i][j]%mo+f[i-1][j-k]%mo)%mo;
}
while (t--)
{
cin>>s; int sum=0;
for (int i=0;i<s.size();i++) sum+=s[i]-'a';
cout<<f[s.size()][sum]%mo-1<<endl;
}
return 0;