【复变函数】傅里叶变换

概念

给定函数 f : R → R f:\mathbb{R}\to \mathbb{R} f:RR,

F [ f ( t ) ] ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \mathcal{F}[f(t)](\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt F[f(t)](ω)=f(t)eiωtdt
其中 i i i 是虚数单位。则 F : R → C F:\mathbb{R} \to \mathbb{C} F:RC.

傅里叶逆变换
F − 1 [ F ( ω ) ] ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω \mathcal{F}^{-1}[F(\omega)](t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega F1[F(ω)](t)=2π1F(ω)eiωtdω
其中 i i i 是虚数单位。满足

F − 1 [ F [ f ] ] ( s ) = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( t ) e − i ω t d t ] e i ω s d ω = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ e i ω ( s − t ) d ω ] f ( t ) d t = ∫ − ∞ ∞ δ ( s − t ) f ( t ) d t = f ( s ) \begin{aligned} &\mathcal{F}^{-1}[\mathcal{F}[f]](s)\\ =&\frac{1}{2\pi}\int_{-\infty}^{\infty} \left[ \int_{-\infty}^\infty f(t) e^{-i\omega t} dt\right]e^{i\omega s}d\omega\\ = &\frac{1}{2\pi}\int_{-\infty}^{\infty} \left[ \int_{-\infty}^\infty e^{i\omega(s- t)} d\omega\right]f(t)d t\\ =&\int_{-\infty}^\infty \delta(s-t)f(t)dt\\ =&f(s)\\ \end{aligned} ====F1[F[f]](s)2π1[f(t)eiωtdt]eiωsdω2π1[eiω(st)dω]f(t)dtδ(st)f(t)dtf(s)

性质

  1. 保加法 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), F { g ( t ) } = G ( ω ) \mathcal{F}\{g(t)\}=G(\omega) F{g(t)}=G(ω), 则
    F { ( f + g ) ( t ) } = ∫ − ∞ ∞ [ f ( t ) + g ( t ) ] e − i ω t d t = ∫ − ∞ ∞ f ( t ) e − i ω t d t + ∫ 0 ∞ g ( t ) e − i ω t d t = F ( ω ) + G ( ω ) \mathcal{F}\{(f+g)(t)\}=\int_{-\infty}^\infty [f(t)+g(t)] e^{-i\omega t}dt=\int_{-\infty}^\infty f(t) e^{-i\omega t}dt+\int_0^\infty g(t) e^{-i\omega t}dt=F(\omega)+G(\omega) F{(f+g)(t)}=[f(t)+g(t)]eiωtdt=f(t)eiωtdt+0g(t)eiωtdt=F(ω)+G(ω),
  2. 保数乘 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω)
    F { k f ( t ) } = ∫ − ∞ ∞ k f ( t ) e − i ω t d t = k ∫ − ∞ ∞ f ( t ) e − i ω t d t = k F ( ω ) \mathcal{F}\{kf(t)\}=\int_{-\infty}^\infty kf(t) e^{-i\omega t}dt= k\int_{-\infty}^\infty f(t) e^{-i\omega t}dt=kF(\omega) F{kf(t)}=kf(t)eiωtdt=kf(t)eiωtdt=kF(ω).
  3. 尺度变换 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), 则
    F { f ( a t ) } = ∫ − ∞ ∞ f ( a t ) e − ω t d t = 1 a ∫ − ∞ ∞ f ( u ) e − i u ω a d u = 1 a F ( ω a ) \mathcal{F}\{f(at)\}=\int_{-\infty}^\infty f(at) e^{-\omega t}dt=\frac{1}{a}\int_{-\infty}^\infty f(u) e^{-i\frac{u\omega}{a}}du=\frac{1}{a}F\left(\frac{\omega}{a}\right) F{f(at)}=f(at)eωtdt=a1f(u)eiauωdu=a1F(aω)
  4. 时移性质 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), 则

F { f ( t − t 0 ) } = ∫ − ∞ ∞ f ( t − t 0 ) e − i ω t d t = ∫ − ∞ ∞ f ( u ) e − i ( u + t 0 ) ω d u = e − i t 0 ω F ( ω ) \mathcal{F}\{f(t-t_0)\}=\int_{-\infty}^\infty f(t-t_0) e^{-i\omega t}dt=\int_{-\infty}^\infty f(u) e^{-{i(u+t_0) \omega}}du=e^{-i t_0\omega}F\left(\omega\right) F{f(tt0)}=f(tt0)eiωtdt=f(u)ei(u+t0)ωdu=eit0ωF(ω)

  1. 频移性质 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), 则

F { e i a t f ( t ) } = ∫ − ∞ ∞ f ( t ) e − i ( ω − a ) t d t = F ( ω − a ) \mathcal{F}\{e^{iat}f(t)\}=\int_{-\infty}^\infty f(t) e^{-i(\omega-a)t}dt=F\left(\omega-a\right) F{eiatf(t)}=f(t)ei(ωa)tdt=F(ωa)

  1. 导数性质 L { f ( t ) } = F ( s ) L\{f(t)\} = F(s) L{f(t)}=F(s), 则
    F { f ′ ( t ) } = ∫ − ∞ ∞ f ′ ( t ) e − i ω t d t = ∫ − ∞ ∞ e − i ω t d f ( t ) = e − i ω t f ( t ) ∣ − ∞ + ∞ + i ∫ − ∞ + ∞ ω e − i ω t f ( t ) d t = i ω F ( ω ) \mathcal{F}\{f'(t)\}=\int_{-\infty}^\infty f'(t) e^{-i\omega t}dt=\int_{-\infty}^\infty e^{-i\omega t}df(t)= e^{-i\omega t}f(t)|_{-\infty}^{+\infty}+i\int_{-\infty}^{+\infty}\omega e^{-i\omega t}f(t)dt=i\omega F(\omega) F{f(t)}=f(t)eiωtdt=eiωtdf(t)=eiωtf(t)++i+ωeiωtf(t)dt=iωF(ω)

  2. 积分性质 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), 则
    F { ∫ − ∞ t f ( x ) d x } = ∫ − ∞ ∞ { ∫ 0 t f ( x ) d x } e − i ω t d t = 1 i ω ∫ − ∞ ∞ { ∫ − ∞ t f ( x ) d x } d e − i ω t = 1 i ω F ( ω ) \mathcal{F}\left\{\int_{-\infty}^t f(x)dx\right\}=\int_{-\infty}^\infty \left\{ \int_0^t f(x)dx\right\} e^{-i\omega t}dt=\frac{1}{i\omega} \int_{-\infty}^\infty \left\{ \int_{-\infty}^t f(x)dx\right\} d e^{-i\omega t}=\frac{1}{i\omega}F(\omega) F{tf(x)dx}={0tf(x)dx}eiωtdt=iω1{tf(x)dx}deiωt=iω1F(ω)

  3. 卷积性质 F { f ( t ) } = F ( ω ) \mathcal{F}\{f(t)\} = F(\omega) F{f(t)}=F(ω), L { g ( t ) } = G ( ω ) L\{g(t)\}=G(\omega) L{g(t)}=G(ω), 则
    F { f ∗ g } = ∫ − ∞ ∞ { ∫ − ∞ ∞ f ( u ) g ( t − u ) d u } e − i ω t d t = ∫ − ∞ ∞ f ( u ) { ∫ − ∞ ∞ g ( t − u ) e − i ω t d t } d u = G ( ω ) ∫ − ∞ ∞ f ( u ) e − i ω u d u = G ( ω ) F ( ω ) . \mathcal{F}\left\{f*g\right\}=\int_{-\infty}^\infty \left\{ \int_{-\infty}^\infty f(u)g(t-u)du\right\} e^{-i\omega t}dt=\int_{-\infty}^\infty f(u)\left\{ \int_{-\infty}^\infty g(t-u) e^{-i\omega t}dt\right\}du=G(\omega)\int_{-\infty}^\infty f(u)e^{-i\omega u}du=G(\omega)F(\omega). F{fg}={f(u)g(tu)du}eiωtdt=f(u){g(tu)eiωtdt}du=G(ω)f(u)eiωudu=G(ω)F(ω).

SymPy 计算

from sympy import *
from sympy.abc import x, w
fourier_transform(exp(-x**2), x, w)

π e − π 2 w 2 \displaystyle \sqrt{\pi} e^{- \pi^{2} w^{2}} π eπ2w2

部分列表

from sympy import *
from prettytable import PrettyTable
init_printing()
t, w =symbols('t, w',complex=True)
a,b = symbols('a b', real=True, positive=True)
n=symbols('n', integer=True)
f = [sin(b*t), cos(b*t),exp(-a*t)*cos(b*t),exp(-a*t)*sin(b*t),DiracDelta(t),exp(-t**2), sin(t)/t, 1/(t**2+1)]
L=[]
for h in f:
    L=L+[[latex(h, mode ="equation",itex=True), latex(fourier_transform(h, t, w), mode ="equation",itex=True)]]
table=PrettyTable()
table.field_names=["原函数","傅里叶变换"]
for row in L[0:]:
    table.add_row(row)
table.border = True
table.horizontal_char = '-'
table.vertical_char = '|'
table.junction_char='|'
table
原函数傅里叶变换
sin ⁡ ( b t ) \sin{\left(b t \right)} sin(bt) 0 0 0
cos ⁡ ( b t ) \cos{\left(b t \right)} cos(bt) 0 0 0
e − a t cos ⁡ ( b t ) e^{- a t} \cos{\left(b t \right)} eatcos(bt) 0 0 0
e − a t sin ⁡ ( b t ) e^{- a t} \sin{\left(b t \right)} eatsin(bt) 0 0 0
δ ( t ) \delta\left(t\right) δ(t) 1 1 1
e − t 2 e^{- t^{2}} et2 π e − π 2 w 2 \sqrt{\pi} e^{- \pi^{2} w^{2}} π eπ2w2
sin ⁡ ( t ) t \frac{\sin{\left(t \right)}}{t} tsin(t) { 0 for   w > 1 2 π ∨ w < − 1 2 π π otherwise \begin{cases} 0 & \text{for}\: w \gt \frac{1}{2 \pi} \vee w \lt - \frac{1}{2 \pi} \\\pi & \text{otherwise} \end{cases} {0πforw>2π1w<2π1otherwise
1 t 2 + 1 \frac{1}{t^{2} + 1} t2+11 π e − 2 π w \pi e^{- 2 \pi w} πe2πw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackPercy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值