分析学
文章平均质量分 93
BlackPercy
研究方向随机逼近方法,锥约束优化,最优控制。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【分析学】 连续性的概念辨析
LipschitzHo¨lder函数的连续性、一致连续性、Lipschitz 连续性、Hölder 连续性以及绝对连续性是数学分析中函数光滑性的不同概念,它们在强度、应用场景和相互关系中各有不同。原创 2025-12-07 20:49:03 · 792 阅读 · 0 评论 -
【分析学】 函数列的收敛性
分析学中的函数列收敛性。原创 2025-10-13 00:22:24 · 1286 阅读 · 0 评论 -
[数理逻辑] 选择公理与共轭空间
在经典泛函分析中,L1([a,b])L_1([a,b])L1([a,b]), C([a,b])C([a,b])C([a,b]) 都不是自反的 Banach 空间。赋范空间 XXX 的共轭空间 X∗X^*X∗ 指的是其上所有有界线性泛函构成的集合。对于 L∞[0,1]L_\infty[0,1]L∞[0,1] 空间,其共轭空间 (L∞[0,1])∗(L_\infty[0,1])^*(L∞[0,1])∗ 可以具体地描述为所有定义在 [0,1][0,1][0,1] 区间上、关于勒贝格测度 μ\muμ 有限可原创 2025-10-13 00:21:51 · 887 阅读 · 0 评论 -
[数理逻辑] 选择公理与不可测实数子集的构造
介绍选择公理下,存在勒贝格不可测集合的例子。原创 2025-09-28 09:45:15 · 1243 阅读 · 0 评论 -
[数理逻辑] ZF+AC 公理体系
介绍ZFC公理体系。原创 2025-09-28 09:44:18 · 1791 阅读 · 0 评论 -
[数理逻辑] 决定性公理与勒贝格可测性 (III) 有限维情况
决定性公理与实数子集可测性的多维部分。原创 2025-09-20 22:17:15 · 1075 阅读 · 0 评论 -
[数理逻辑] 决定性公理与勒贝格可测性(I) 基础知识
决定性公理与实数子集可测性的核心结论原创 2025-09-20 14:39:07 · 1757 阅读 · 0 评论 -
【数学规划】梯度的概念与计算
各类空间中函数的梯度,或泛函的变分。原创 2024-09-06 22:02:35 · 1260 阅读 · 0 评论 -
【分析学】 柯西收敛定理 --- 通往高维空间完备性的桥梁
高维空间内 柯西列收敛性的证明,及其推出 有限覆盖定理闭区间套定理的过程原创 2025-08-08 12:15:54 · 1273 阅读 · 0 评论 -
【分析学】带核内积
从非线性映射到核函数, 铺垫核方法支持向量机。原创 2025-08-05 17:48:12 · 1291 阅读 · 0 评论 -
【分析学】内积空间中的线性算子
内积空间中常见的线性算子, 包括有限维空间与无限维空间。原创 2025-08-05 17:42:26 · 1152 阅读 · 0 评论 -
【分析学】Hilbert 空间
内积空间是分析学中重要的研究对象,有限维对应线性代数,多元微积分, 无穷维对应泛函分析以及部分微分方程解的适定性。原创 2025-08-03 14:44:54 · 880 阅读 · 0 评论 -
【分析学】Hilbert 空间的分离性
得益于内积结构, Hilbert 空间中的凸集分离定理不需要 Hahn-Banach 定理即可建立,也就回避了是否承认 “选择公理” 的困境。原创 2025-08-03 14:43:45 · 946 阅读 · 0 评论 -
【数理逻辑】 从选择公理出发 —— 等价形式
设。原创 2025-07-06 22:49:26 · 1489 阅读 · 0 评论 -
【数理逻辑】 决定性公理 (Axiom of Determinacy)
对于某个固定的。原创 2025-07-06 09:34:29 · 1254 阅读 · 0 评论 -
【分析学】从有限开覆盖定理出发 -- 实数系完备性
设。原创 2025-07-02 21:28:16 · 1131 阅读 · 0 评论 -
【数理逻辑】 选择公理与集值映射
条件是否依赖 AC所需公理例子IabI = [a, b]Iab不可数是全 AC任意无序Fx⊂RFx⊂RFxF(x)Fx是单点集否无需选择公理FxxFxxFxF(x)Fx是紧凸集是依赖 AC 的拓扑选择定理微分包含解的存在性。原创 2025-07-02 21:28:00 · 1287 阅读 · 0 评论 -
【分析学】 从闭区间套定理出发(二) -- 闭区间连续函数性质
摘要:本文围绕闭区间套定理及其应用展开,首先介绍了闭区间套定理的基本内容:若一列闭区间满足套缩性和长度趋于零,则存在唯一的公共点。随后重点讨论了该定理在连续函数性质证明中的关键作用:1) 证明闭区间上连续函数的一致连续性;2) 证明零点存在定理;3) 证明闭区间上连续函数的有界性。最后附论中利用闭区间套定理证明了闭区间是不可数集。全文通过反证法和构造性证明,系统展示了闭区间套定理在分析学中的强大工具性作用。原创 2025-06-29 18:25:57 · 1465 阅读 · 0 评论 -
[分析学] 从闭区间套定理出发 (一)-- 实数系完备性定理
本文通过闭区间套定理证明了实数系完备性的几个关键定理,包括确界定理、单调有界定理、柯西收敛定理和聚点定理。核心步骤如下: 确界定理:通过二分法构造闭区间套,证明非空有上界集合存在上确界; 单调有界定理:利用区间套证明单调有界数列收敛; 柯西收敛定理:通过柯西序列性质构造区间套,证明其收敛; 聚点定理:用区间套方法证明有界无限集必有聚点。 所有证明均遵循;构造闭区间套→应用区间套定理→验证目标性质的统一框架,体现了闭区间套定理在实数完备性理论中的基础性作用。原创 2025-06-29 18:25:23 · 1391 阅读 · 0 评论 -
【分析学】 从确界定理出发——实数系完备定理
实数系的完备性七大定理是数学分析中描述实数连续性的核心命题,它们从不同角度刻画了实数集的无“空隙”特性,并彼此等价。然而往往数学分析教材中往往使用回路的方法进行七大定理的互推来证明等价性,这无疑是最方便的方法,但这份方便使得学生对分析学语言的灵活运用却并不理解。这篇博文围绕确界定理为出发点证明其他定理。证明思路可以总结为Step1: 给出要证定理 A 的条件Step2: 构造确界定理的条件Step3:利用确界定理的结论证明定理A的结果其中开覆盖定理与其他定理不同,通常使用反证法。内容:任何非空有上界(或原创 2025-06-15 23:13:58 · 2139 阅读 · 0 评论 -
【分析学】 实数
自然数的定义 (2000年将0纳入自然数的集合)N0123⋯整数的定义Z01−12−23−3⋯有理数的定义可以表示为小数部分是从某位往开始若干位循环的。即存在有限位小数M与正整数TqM0.0⋯0a1a2⋯aTa1a2⋯aT⋯a1a2⋯aT⋯其中ai是集合0123456789中的一个元素。有理数的等价定义Qnm∣m∈Zn∈。原创 2025-06-15 23:12:12 · 979 阅读 · 0 评论
分享