2021-09-08 从泰勒公式到欧拉公式

本文探讨了泰勒公式的核心概念,即如何通过多项式逼近任意光滑函数,并特别提到欧拉公式在自然指数表达上的应用。重点在于0-∞阶导数匹配的原理,以及在特定点Xo处的精确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

泰勒公式的本质:
本质是光滑函数的另一种表达,多项式用来逼近光滑函数。
目的:用多项式拟合一般函数
方法:保证多项式与原函数在0-∞阶导数都相同
在这里插入图片描述
Xo表示在X=Xo附近,多项式与光滑函数贴合较好。

欧拉公式
即是用正余弦函数之和表示自然指数的泰勒展开
(因为乘序数的正弦函数的泰勒展开加上余弦函数的泰勒展开正好等于自然指数函数的泰勒展开,如下图)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值