ZOJ 2853 矩阵乘法

很神奇的4720msAC....

看来double 不是一般的慢啊!!哎呀呀~

#include<iostream>
#include<string.h>
#include<cstdio>
#include<cmath>
#define eps 1e-5
using namespace std;

struct node
{	double m[222][222];
}res,temp,mod;

int n,m,t;

node matriXmult( node a,node b )
{
 	 node c;
 	 memset( c.m,0,sizeof(c.m) );
 	 for( int i=0;i<n;i++ )
 	 for( int k=0;k<n;k++ )
 	 if( a.m[i][k] )
 	 for( int j=0;j<n;j++ )
 	 {
 	 	  if( b.m[k][j] )
 	 	  c.m[i][j]+=a.m[i][k]*b.m[k][j];
	 }
 	 return c;
}
void matrix_Power()
{
 	 //memset( res.m,0,sizeof(res.m) );
 	 //memset( temp.m,0,sizeof(temp.m) );
 	 for( int i=0;i<n;i++ )
 	 {	for( int j=0;j<n;j++ )
 	 	  temp.m[i][j]=mod.m[i][j],
 	 	  res.m[i][j]=i==j;
	 }
	 for( int i=0;m>=(1<<i);i++ )
	 {
	  	  if( m&(1<<i) )
		  	  res=matriXmult(res,temp);
		  temp=matriXmult(temp,temp);
  	 }
}
int main()
{
 	int date[222];
 	while( scanf("%d%d",&n,&m)!=EOF )
	{	
		if( n==0&&m==0 )
			break;
		for( int i=0;i<n;i++ )
			 scanf( "%d",&date[i] );
	 	memset( mod.m,0,sizeof(mod.m) );
	 	for( int i=0;i<n;i++ )
	 		 mod.m[i][i]=1;
	 	scanf( "%d",&t );
	 	int a,b;double rate;
	 	for( int i=0;i<t;i++ )
	 	{
		 	 scanf( "%d%d%lf",&a,&b,&rate );
		 	 mod.m[a][a]-=rate;
		 	 mod.m[a][b]+=rate;
 	 	}
 	 	matrix_Power();
 	 	double ans=0;
 	 	for( int i=0;i<n;i++ )
 	 		 ans+=date[i]*res.m[i][n-1];
 	 	printf( "%.0lf\n",ans );
  	}
}



下面的代码优化了一下,果然不用结构体还是十分的省时间的啊!

下面的代码Time:470ms,小成就啊!

#include<iostream>
#include<string.h>
#include<cstdio>
#include<cmath>
#define eps 1e-12
using namespace std;

double res[201][201],mod[201][201];

int n,m,t;
void matriXmult( double a[][201],double b[][201] )
{
 	 int i,j,k;
 	 double c[201][201];
 	 for( int i=0;i<n;i++ )
 	 for( int j=0;j<n;j++ )
 	 	  c[i][j]=0;
 	 for( int i=0;i<n;i++ )
 	 for( int k=0;k<n;k++ )
 	 if( a[i][k]>eps )
 	 for( int j=0;j<n;j++ )
 	 	  c[i][j]+=a[i][k]*b[k][j];
	 for( int i=0;i<n;i++ )
	 for( int j=0;j<n;j++ )
	 	  a[i][j]=c[i][j];
}

void matrix_Power(double res[][201],int m)
{
 	 if( m==1 )
 	 {
	  	 for( int i=0;i<n;i++ )
	  	 for( int j=0;j<n;j++ )
	  	 	  res[i][j]=mod[i][j];
	  	 return ;
	 }
	 matrix_Power( res,m>>1 );
	 matriXmult( res,res );
	 if( m&1 )matriXmult( res,mod );
}


int main()
{
 	int date[222];
 	while( scanf("%d%d",&n,&m)!=EOF )
	{	
		if( n==0&&m==0 )
			break;
		for( int i=0;i<n;i++ )
			 scanf( "%d",date+i );
	 	for( int i=0;i<n;i++ )
	 	for( int j=0;j<n;j++ )
	 		 mod[i][j]=i==j;
	 	scanf( "%d",&t );
	 	int a,b;double rate;
	 	for( int i=0;i<t;i++ )
	 	{
		 	 scanf( "%d%d%lf",&a,&b,&rate );
		 	 mod[a][a]-=rate;
		 	 mod[a][b]+=rate;
 	 	}
 	 	matrix_Power(res,m);
 	 	double ans=0;
 	 	for( int i=0;i<n;i++ )
 	 		 ans+=date[i]*res[i][n-1];
 	 	printf( "%.0lf\n",ans );
  	}
  	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值