算法训练 未名湖边的烦恼
时间限制:1.0s 内存限制:256.0MB
问题描述
每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
输入格式
两个整数,表示m和n
输出格式
一个整数,表示队伍的排法的方案数。
样例输入
3 2
样例输出
5
数据规模和约定
m,n∈[0,18]
DP思路:
当m小于n时,借鞋人比换鞋人多,结果为0
当m等于n时,和前一种答案一样
前面的f[i-1][j]意思是还鞋子的一个人站在最前面,之后剩下的哪些人再接着排序,f[i][j-1] 意思是借鞋子的人站在最后面,剩下的再接着排序。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int f[1000][1000],m,n;
void Init(){
int i,j;
for(i=1;i<=m;i++)
f[i][0]=1;
for(i=1;i<=m;i++){
for(j=1;j<=n;j++){
if(i==j)
f[i][j]=f[i][j-1];
if(i>j)
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
}
int main() {
int i,j,k;
int ans=0;
scanf("%d %d",&m,&n);
Init();
printf("%d\n",f[m][n]);
return 0;
}