MPViT实战:植物幼苗分类(1)

transforms.ToTensor(),

transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

Mixup实现,在train方法中。需要导入包:from torchtoolbox.tools import mixup_data, mixup_criterion

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)

data, labels_a, labels_b, lam = mixup_data(data, target, alpha)

optimizer.zero_grad()

output = model(data)

loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)

loss.backward()

optimizer.step()

print_loss = loss.data.item()

项目结构

===============================================================

使用tree命令,打印项目结构

MPViT_demo

├─data

│ ├─test

│ └─train

│ ├─Black-grass

│ ├─Charlock

│ ├─Cleavers

│ ├─Common Chickweed

│ ├─Common wheat

│ ├─Fat Hen

│ ├─Loose Silky-bent

│ ├─Maize

│ ├─Scentless Mayweed

│ ├─Shepherds Purse

│ ├─Small-flowered Cranesbill

│ └─Sugar beet

├─dataset

│ ├─ init.py

│ └─ dataset.py

├─Model

│ └─mpvit.py

├─ test1.py

├─ test2.py

└─ train.py

mpvit.py:来自官方的代码中。

train.py:本文定义。

dataset.py:本文定义

test1.py:本文定义

test2.py:本文定义

数据集

==============================================================

数据集选用植物幼苗分类,总共12类。数据集连接如下:

链接:https://pan.baidu.com/s/1TOLSNj9JE4-MFhU0Yv8TNQ

提取码:syng

在工程的根目录新建data文件夹,获取数据集后,将trian和test解压放到data文件夹下面,如下图:

image-20220204151710053

导入模型文件

=================================================================

从官方的链接中找到mpvit.py文件,将其放入Model文件夹中。如图:

image-20220204151925730

安装库,并导入需要的库

==========

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值