目录
一、方法的基本用法
什么是方法(method)
方法就是一个代码片段,类似于 C 语言中的 “函数”.
方法的存在意义:
1. 能够模块化的组织代码.
2. 做到代码被反复使用,一份代码可以在多个位置使用.
3. 让代码更好理解.
4. 直接调用存在的方法开发,不必重复造轮子.
方法定义语法
基本语法
// 方法定义
public static 方法返回值 方法名称([参数类型 形参 ...]){
方法体代码;
[return 返回值];
}
// 方法调用
返回值变量 = 方法名称(实参...);
代码示例:实现一个方法实现两个整数相加
public class Test01 {
public static int add(int x, int y){
return x + y;
}
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a,b);
System.out.println(ret);
}
}
注意事项
- public 和 static 两个关键字在此处具有特定含义.
- 方法定义的时候,参数可以没有,每个参数要指定类型.
- 方法定义的时候,可以没有返回值,返回值类型要写成 void.
- 方法定义的参数称为 “形式参数”,方法调用传递进入的参数称为 “实际参数”.
- 方法的定义必须要写在类之中,在调用位置的上方或者下方都可以.
- Java 中没有 “函数声明” 这样的概念.
方法调用的执行过程
基本规则
- 定义方法的时候,不会执行方法的代码,只有在调用的时候执行.
- 当方法调用的时候,会把实际参数传递给形式参数.
- 参数传递完毕,才能执行方法的代码.
- 当方法执行完毕之后(遇到 return 语句), 就执行完毕, 回到方法调用位置继续往下执行.
- 一个方法可以被调用多次.
代码示例1:计算两个整数相加
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
System.out.println("第一次调用方法之前");
int ret = add(a, b);
System.out.println("第一次调用方法之后");
System.out.println("ret = " + ret);
System.out.println("第二次调用方法之前");
ret = add(30, 50);
System.out.println("第二次调用方法之后");
System.out.println("ret = " + ret);
}
public static int add(int x, int y) {
System.out.println("调用方法中 x = " + x + " y = " + y);
return x + y;
}
}
// 执行结果
一次调用方法之前
调用方法中 x = 10 y = 20
第一次调用方法之后
ret = 30
第二次调用方法之前
调用方法中 x = 30 y = 50
第二次调用方法之后
ret = 80
使用方法,避免使用二重循环,让代码更加简单清晰.
实参和形参的关系
代码示例:交换两个整型变量
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
swap(a, b);
System.out.println("a = " + a + " b = " + b);
}
public static void swap(int x, int y) {
int tmp = x;
x = y;
y = tmp;
}
}
// 运行结果
a = 10 b = 20
原因分析
上面这段代码没有完成数据的交换.
对于基础类型来说,形参相当于实参的拷贝. 即 传值调用
类似于:
int a = 10;
int b = 20;
int x = a;
int y = b;
int tmp = x;
x = y;
y = tmp;
对 x 和 y 的修改,不影响 a 和 b.
解决方法:基本类型不行,就使用引用类型参数
class Test {
public static void main(String[] args) {
int[] arr = {10, 20};
swap(arr);
System.out.println("a = " + arr[0] + " b = " + arr[1]);
}
public static void swap(int[] arr) {
int tmp = arr[0];
arr[0] = arr[1];
arr[1] = tmp;
}
}
// 运行结果
a = 20 b = 10
没有返回值的方法
方法的返回值是可选的. 有些时候可以没有的.
代码示例
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
print(a, b);
}
public static void print(int x, int y) {
System.out.println("x = " + x + " y = " + y);
}
}
之前交换两个整数的方法,也是没有返回值的.
二、方法的重载
有些时候我们需要用一个函数,同时兼容多种参数.
我们就可以使用到方法重载.
重载要解决的问题
代码示例
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = add(a2, b2);
System.out.println("ret2 = " + ret2);
}
public static int add(int x, int y) {
return x + y;
}
}
// 编译出错
Test.java:13: 错误: 不兼容的类型: 从double转换到int可能会有损失
由于参数类型不匹配,所以不能直接使用现有的 add 方法.
那么是不是需要创建这样的代码才能满足需求?
代码示例
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = addInt(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = addDouble(a2, b2);
System.out.println("ret2 = " + ret2);
}
public static int addInt(int x, int y) {
return x + y;
}
public static double addDouble(double x, double y) {
return x + y;
}
}
这样的写法,Java 认为 addInt 的命名不太友好,不如直接叫 add.
使用重载
代码示例
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = add(a2, b2);
System.out.println("ret2 = " + ret2);
double a3 = 10.5;
double b3 = 10.5;
double c3 = 20.5;
double ret3 = add(a3, b3, c3);
System.out.println("ret3 = " + ret3);
}
public static int add(int x, int y) {
return x + y;
}
public static double add(double x, double y) {
return x + y;
}
public static double add(double x, double y, double z) {
return x + y + z;
}
}
方法的名字都叫 add. 但有的 add 是计算 int,有的是计算 double;有的是计算两个数字,有的是计算三个数字.
同一个方法名字,提供不同版本的实现,称为 方法重载.
重载的规则
1. 方法名相同.
2. 方法的参数不同(参数个数 或者 参数类型).
3. 方法的返回值类型不影响重载.
代码示例
class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
}
public static int add(int x, int y) {
return x + y;
}
public static double add(int x, int y) {
return x + y;
}
}
// 编译出错
Test.java:13: 错误: 已在类 Test中定义了方法 add(int,int)
当两个方法的名字相同,返回值类型不同,但参数相同,不构成重载.
三、方法递归
递归的概念
一个方法在执行过程中调用自身,就称为 “递归”.
递归相当于数学上的 “数学归纳法”,有一个起始条件,然后有一个递推公式.
例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!
代码示例:递归求 N 的阶乘
public static void main(String[] args) {
int n = 5;
int ret = factor(n);
System.out.println("ret = " + ret);
}
public static int factor(int n) {
if (n == 1) {
return 1;
}
return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120
递归执行过程分析
递归的程序的执行过程不太好理解,要想理解递归,必须先理解清楚 “方法的执行过程”,尤其是 “方法结束后,回到调用位置继续向下执行”.
代码示例:递归求 N 的阶乘。
public static int fac(int n){
if (n == 1) {
return 1;
}
return n * fac(n - 1);
}
public static void main(String[] args) {
int num = 3;
int ret = fac(num);
System.out.println(ret);
}
执行过程图
画得有点丑…
程序先执行红线,去找结束条件;再执行绿线,把结果 return 返回。
递归练习题1:按顺序打印一个数字的每一位.
public static void print(int n){
if (n > 9) {
print(n / 10);
}
System.out.println(n % 10);
}
递归练习题2:递归求 1 + 2 + 3 + … + 10.
public static int sumNum(int n){
if (n == 1) {
return 1;
}
return n + sumNum(n - 1);
}
递归练习题3:写一个递归方法,输入一个非负整数,返回组成它的数字之和. 例如,输入 1729, 则应该返回1+7+2+9,它的和是19.
public static int print(int n){
if (n < 10) {
return n;
}
return (n % 10) + print1(n / 10);
}
递归练习题4:求斐波那契数列的第 N 项.
//斐波那契数列的第 N 项
//1 1 2 3 5 8
public static int fib(int n){
if (n < 3) {
return 1;
}
return fib(n - 1) + fib(n - 2);
}
当我们求 fib(40) 的时候发现,程序执行速度极慢. 原因是进行了大量的重复计算.
//斐波那契数列的第 N 项
//1 1 2 3 5 8
public static int count = 0;
public static int fib(int n){
if (n < 3) {
return 1;
}
if (n == 3) {
count++;
}
return fib(n - 1) + fib(n - 2);
}
public static void main(String[] args) {
int num = 40;
System.out.println(fib(num));
System.out.println(count);
}
//执行结果
102334155
39088169 //fib(3) 重复执行了 3 千万次.
可以使用循环的方式来求斐波那契数列问题,避免出现冗余.
public static int fib1(int n){
if (n < 3) {
return 1;
}
int tmp = 0;
int last1 = 1;
int last2 = 1;
for (int i = 3; i <= n; i++){
tmp = last1 + last2;
last1 = last2;
last2 = tmp;
}
return tmp;
}
效率大大滴提升了.
递归小结
递归是一种重要的编程解决问题的方式.
有些问题天然就是使用递归方式定义的(例如斐波那契数列, 二叉树等), 此时使用递归来解就很容易.
有些问题使用递归和使用非递归(循环)都可以解决. 那么此时更推荐使用循环, 相比于递归, 非递归程序更加高效.