机器学习
sgcwddhr
学习中
展开
-
统计学习方法第四章(朴素贝叶斯)及Python实现及sklearn实现
1原理朴素贝叶斯贝叶斯:根据贝叶斯定理p(y|x) = p(y)p(x|y)/p(x).选择p(y|x) 最大的类别作为x的类别。可知朴素贝叶斯是监督学习的生成模型(由联合概率分布得到概率分布)。选择p(y|x) 最大的类别时,分母相同,所以简化为比较 p(y)p(x|y)的大小。朴素: 计算p(x|y)的概率,假设x是n维向量,每维向量有sn个取值可能,则就要计算类别*(sn的n次方)次。过于复杂。因此假设样本的特征之间相互独立,所以叫朴素。则p(x|y) = p(xi|y)的乘积,i=1,2,n.原创 2020-11-10 18:49:50 · 589 阅读 · 0 评论 -
统计学习方法(第三章)--KNN分类器python实现及kd树实现及sklearn调用
KNN算法的的原理:KNN不存在显式的学习过程,对于一个测试样本,根据给定的距离计算公式,和k值,找到距离测试样本最近的k个训练样本,k个训练样本得票最高的类别作为测试样本的类别。三要素距离的度量np.linalg.norm(x-y,p) #p=1即曼哈顿距离,p=2即欧式聚类k值的选择k值过大,,模型简单k值过小,模型过拟合通常k值选择较小的一个数,采用交叉验证法来选取最优的k值。决策规则通常选择多数服从少数原理,即得票最多的类别作为测试类别python实现(线性查询比较)impo原创 2020-10-29 18:21:16 · 524 阅读 · 0 评论 -
统计学习方法(第二章)--感知器(python实现以及sklearn调用)
统计学习方法(第二章)–感知器(python实现以及sklearn调用)1 原理找到一个分离超平面y=f(wx + b),可以将数据分开,使wx + b>0的属于正类,wx + b<=0的属于负类。因此感知器是一个线性二分类模型。三要素:模型:y = f(wx + b)策略:定义损失函数,误分类的点到超平面的距离和最小化。点到超平面的距离公式是|wx+b|/||w||.因为限制误分类的点,所以y(wx+b)<=0.忽略第二范数||w||。则损失函数L(Y,f(X)) = -y(w原创 2020-10-28 15:22:33 · 701 阅读 · 0 评论 -
统计学习方法(李航)(第一章 概念)
统计学习方法(第一章)1定义基于数据,利用计算机构建概率统计模型,用模型对未知数据进行预测。统计学习方法:监督学习方法,非监督学习方法,半监督学习方法,强化方法。(是否需要标注数据)监督学习方法:分类(输出变量是有限个离散变量),回归(输入,输出变量都是连续变量),标注(输入,输出变量都是序列变量)2三要素模型:就是可能的函数,所有的函数组成假设空间 。假设数据是独立同分布的,是由函数生成的。现在已知数据,求生成这些数据的最大可能函数。模型由概率模型P(Y|X)或者决策函数Y=f(X)表示。策原创 2020-10-28 13:49:24 · 176 阅读 · 0 评论