- 博客(76)
- 收藏
- 关注
原创 使用Google Gemini函数创建智能决策代理
在AI开发中,代理(agent)是一个非常重要的概念。它能够自主做出决策并采取行动。今天的这篇文章主要聚焦于利用Google Gemini函数调用来实现这一点。除此之外,该代理还能选用Tavily的搜索引擎来查找网络信息,简直就是一个AI界的多面手。。所有的模板都可以在看到,而专门的游乐场可以通过访问。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-30 14:21:49
230
原创 如何从你的RAG应用程序中流式传输结果
在现代AI应用中,RAG技术结合了大语言模型(LLM)和信息检索系统,以便在回答问题时提供更具上下文的信息。然而,在复杂的RAG应用中,能够实时查看各个处理步骤的结果是十分重要的,特别是在使用LLM进行多步调用时。流式传输在复杂应用中的作用不可小觑,它提高了透明度和可调试性。说白了就是这么个原理,老铁们,如果在开发过程中有任何问题,可以在评论区交流!今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-30 03:29:08
404
原创 深入了解 LangChain Runnables 的检查与调试
在 LangChain 中,runnables 是一系列的可执行步骤,用于处理和转换数据。通过 LCEL,我们可以方便地构建这些链,并通过不同的组件来管理复杂的任务。本次我们会创建一个简单的检索链,用于演示如何对其进行检查。通过这样,我们可以验证模板配置是否符合预期。
2024-12-30 01:05:27
418
原创 如何使用提示来进行数据提取,无需调用工具
在很多应用场景中,我们需要从自然语言文本中提取结构化信息,例如从一段描述中提取出人物的详细信息。通常,我们可能会考虑使用工具调用功能来实现这样的提取,但实际上,通过设计高效的提示和解析输出,我们也可以让LLM做到这一点。我个人一直在用yuhwu.ai提供一站式大模型解决方案,稳定且高效,非常适合需要高频调用和快速响应的应用场景。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-30 00:37:35
398
原创 如何创建自定义LLM类
大家好,老铁们,今天咱们来聊聊怎么在LangChain中创建一个自定义的LLM(Large Language Model)类。当我们需要使用自己的模型或者想要用不同的封装器时,这个内容会很有帮助。通过将你的LLM封装成标准的LLM接口,你可以在已有的LangChain程序中无缝集成它,几乎不用改动代码。更酷的是,你的LLM会自动支持LangChain的Runnable接口,享受到一些开箱即用的优化,比如异步支持,流式事件API等。
2024-12-29 22:51:42
319
原创 如何为聊天机器人添加工具支持
老铁们,今天我们来聊聊如何为你的聊天机器人增添点“智慧”:让它不仅能和你愉快地聊天,还能动动脑袋去网上搜索信息,说白了就是让聊天机器人可以调用工具来获取实时数据。在这个教程中,我们将使用一个名为 Tavily 的工具,它可以在不同情况下搜索网络信息。最后,关于如何使你的聊天机器人能够记住会话上下文并且做出相应的回应,我们可以将代理执行器包裹在一个类中,以便管理历史消息。详情可以参考和。说了这么多,老铁们,其实只要稍微摸索一下就能领悟其中的精髓。今天的技术分享就到这里,希望对大家有帮助。
2024-12-29 22:18:22
356
原创 如何在查询分析中处理多检索器
在某些查询分析技术中,你可以选择哪个检索器来使用。我们通过一个简单的例子演示如何做到这一点。为了实现这一目标,需要在代码中添加一些逻辑来选择适合的检索器。在这篇文章中,我们展示了如何在查询分析中处理多个检索器,以及如何通过简单的逻辑选择合适的检索器。希望这个示例能帮助大家在开发过程中更好地处理多检索器的问题。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-29 20:21:23
227
原创 利用Langchain加载Blackboard课程数据的实战指南
Blackboard Learn系统通常用来管理在线课程和学生信息。它的开放架构和可扩展设计让我们可以集成其他系统的数据。我们今天要做的就是借助Langchain的,从指定的Blackboard实例中获取课程数据。我个人一直在用 Langchain 提供的文档加载器来处理这种从各种平台获取数据的需求,尤其是像Blackboard这样的平台,Langchain的解决方案让整个流程变得相当丝滑。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-28 05:55:54
355
原创 使用LM Format Enforcer保证语言模型输出格式的正确性
老铁们,今天我们来聊聊如何用库来规范语言模型的输出格式。这个库通过过滤tokens来确保输出格式的正确性。它结合了字符级解析器和tokenizer前缀树,只允许包含可能有效格式字符序列的tokens。这种方式支持批量生成,不过得注意,这个模块目前还是实验性质的。
2024-12-27 18:01:55
270
原创 探索 Microsoft Azure 与 Azure OpenAI 的强大功能
Microsoft Azure 是一个由微软运营的云计算平台,提供全球数据中心的访问、管理和应用开发服务。其服务项目包括了软件即服务 (SaaS)、平台即服务 (PaaS) 和基础设施即服务 (IaaS)。其中,Azure OpenAI 的加入,使得开发者可以使用来自 OpenAI 的强大语言模型,包括 GPT-3、Codex 系列等用于内容生成、摘要、语义搜索,以及自然语言到代码翻译。
2024-12-25 07:49:26
431
原创 利用DocArray进行多模态数据管理与检索
老铁们,今天我们来聊聊DocArray这个开源利器,它真的是一个管理多模态数据的好工具。利用DocArray,你可以灵活地组织数据,并通过各种文档索引后端进行存储和检索,特别适合构建Langchain应用。说白了,就是用这种灵活的文档索引来进行智能检索。本次探讨将分为两部分。第一部分,我们将介绍DocArray支持的五种文档索引后端,并讲解如何设置和索引每种后端,还会教大家怎么创建DocArrayRetriever来寻找相关文档。第二部分,则通过一个示例深入探讨具体应用。
2024-12-23 08:17:13
269
原创 探索Gutenberg电子书加载器:轻松加载和处理免费电子书
LangChain 文档加载器指南Project Gutenberg 官方网站通过这些资源,您可以更深入地掌握如何有效利用免费电子书进行各类应用和研究。
2024-12-22 14:18:31
492
原创 探索OpenVINO与Hugging Face结合使用的强大潜力
OpenVINO™是由Intel开发的一个工具包,旨在优化和加速AI推理任务。其Runtime支持多种硬件设备,包括x86和ARM架构的CPU,以及Intel GPU等。通过这些优化,开发者可以在不同的硬件环境中实现AI模型的高效部署。
2024-12-22 06:50:25
450
原创 [在本地实现AI嵌入向量:轻松使用LocalAI Embedding类]
LocalAI为开发者提供了一种灵活且安全的方式来管理和生成嵌入向量。在LocalAI官方文档中可以找到更多的技术细节和高级特性。
2024-12-22 05:51:53
417
原创 探索Cohere Embeddings:深度理解与实践
Cohere Embeddings为NLP任务提供了强大的基础设施,便于开发者快速实现文本向量化。建议进一步阅读Cohere的Embedding模型指南和API使用文档以获取更多信息。
2024-12-22 03:42:05
348
原创 探索Clova Embeddings:使用LangChain进行文本嵌入
Clova Embeddings结合LangChain提供了一个简单且强大的工具,用于生成文本嵌入。Embedding Model指南LangChain文档通过这些资源,你可以更全面地了解如何将文本嵌入应用在不同的自然语言处理任务中。
2024-12-22 03:36:35
289
原创 [解锁Baichuan LLM的潜能:全面指南和实用示例]
Baichuan LLM提供了强大的功能,是开发者在自然语言处理领域的利器。建议使用者深入研究LLM概念指南和LLM如何使用指南,以充分发挥其能力。
2024-12-21 19:17:17
385
原创 探索ChatPremAI:使用LangChain实现智能对话的秘诀
LangChain官方文档PremAI平台指南生成式AI的最佳实践通过本文,我们探讨了如何使用LangChain与ChatPremAI整合开发智能对话应用。如果您想更深入地了解,可以访问以上资源。
2024-12-21 17:26:14
499
原创 利用ChatFriendli增强聊天应用!集成LangChain实现高效对话AI
使用ChatFriendli集成LangChain为您的聊天应用提供了高效且灵活的解决方案。通过同步和异步方法,您可以根据实际需求优化性能和成本。LangChain 官方文档Friendli AI 文档异步编程入门指南。
2024-12-21 15:14:53
225
原创 探索Azure OpenAI Embedding:通过环境变量配置实现无缝集成
我们已经探讨了如何通过环境变量配置和使用Azure OpenAI的Embedding服务。这种方法能够使应用程序更容易适应不同的环境设置。Azure OpenAI Embedding 模型概念指南Langchain API参考文档。
2024-12-21 11:35:46
690
原创 轻松掌握 Google Serper:最新的网页搜索 API 应用指南
Google Serper 提供了一种快捷、强大的网络搜索方式,结合大语言模型,可以解决复杂的信息获取需求。对于更深入的学习,可以参考的使用文档,以及serper.dev官方资源。
2024-12-21 10:25:23
916
原创 无缝管理聊天记录:Google Cloud Spanner 与 Python 集成指南
你可以传递一个自定义客户端到构造函数中,这允许你使用非默认的客户端配置。通过本文的指导,你现在可以使用 Google Cloud Spanner 高效地管理聊天信息历史记录。同时对于复杂的数据库操作,Google 的文档和 GitHub 是不错的学习资源。Google Cloud Spanner 文档Langchain Google Spanner GitHub 项目。
2024-12-21 09:47:24
370
原创 探索Google Vertex AI Vector Search:高效的矢量数据库解决方案
Google Vertex AI Vector Search是一个强大的工具,可以显著提升信息检索系统的性能。通过本文的介绍,相信你能够更好地理解如何使用该工具构建复杂的推荐系统。Google Cloud Vertex AI 文档LangChain API 参考资料。
2024-12-21 08:21:31
454
原创 在Kubernetes中轻松管理Oracle数据库: Google El Carro与Langchain集成指南
El Carro是一个为Oracle数据库设计的Kubernetes运算符,提供了一个强大的声明性API,用于全面且一致的配置、部署以及实时操作和监控。使用El Carro,你可以在任何环境中灵活地管理Oracle数据库。Google El Carro的出现为在Kubernetes中管理Oracle数据库提供了新的可能性。通过与Langchain集成,开发者可以轻松实现数据库与AI应用的结合。
2024-12-21 06:54:02
964
原创 探索Google BigQuery:如何加载查询并使用Langchain管理数据
通过结合使用Google BigQuery和Langchain,您可以高效地管理和分析大规模数据集。想要深入了解BigQuery的更多特性,您可以参考下面的资源。
2024-12-21 06:16:30
234
原创 探索Amazon MemoryDB中的向量搜索与Langchain集成
Amazon MemoryDB兼容Redis OSS,允许用户使用已有的Redis数据结构和命令快速构建应用。MemoryDB在内存中存储数据,通过在多个可用区中的事务日志确保数据的持久性和快速故障切换。MemoryDB的向量搜索扩展了其功能,能够在现有的MemoryDB中使用,支持多字段索引和向量相似性搜索。在Redis哈希和JSON中对多个字段进行索引使用HNSW(ANN)或FLAT(KNN)的向量相似性搜索向量范围搜索(例如,查找在查询向量半径内的所有向量)增量索引无性能损失。
2024-12-21 05:13:49
489
原创 探索AnthropicLLM与LangChain:快速入门及实用示例
通过本文,您应该对如何使用LangChain与AnthropicLLM有了基本的了解。Anthropic LLM 概念指南LangChain 如何使用指南。
2024-12-21 03:42:37
332
原创 探秘YouTube数据采集:从视频获取信息的技巧与挑战
通过和pytube,开发者能够高效地从YouTube获取视频信息和转录。在处理因地域限制导致的访问问题时,使用API代理服务是一个值得考虑的解决方案。
2024-12-21 03:22:27
613
原创 [Unlocking the Power of Typesense: A Seamless Introduction to Fast Search]
Typesense为开发者提供了一个强大而易用的搜索引擎解决方案,无论是简单的文本搜索还是复杂的向量存储。Typesense 官方文档Typesense GitHub 仓库Typesense API 参考。
2024-12-21 01:24:15
366
原创 [深入解析Trubrics:利用用户反馈提升AI模型表现]
Trubrics是一个强大的工具,可以帮助开发者更好地理解用户的需求和反馈。Trubrics GitHub 仓库LangChain 文档如何有效收集用户反馈。
2024-12-21 01:07:18
360
原创 [使用LanceDB实现高效语义搜索和示例选择]
LanceDB作为LangChain中的一个强大工具,可以极大地提升语义搜索和示例选择的效率。通过本文,我们了解了如何安装、配置和使用LanceDB进行具体的操作。LangChain官方文档LanceDB详细使用手册。
2024-12-20 17:15:34
600
原创 探索Hacker News API:解锁计算机科学与创业的宝库
本文介绍了Hacker News API的基础知识及其在项目中的应用。通过合理使用API接口,你可以获取到丰富的计算机科学和创业信息,更好地让项目与最新技术动态接轨。Hacker News API 官方文档langchain_community GitHub 仓库。
2024-12-20 15:11:36
320
原创 探索LangChain的GPT4All包装器:安装与使用指南
GPT4All支持自定义生成参数以适应不同的应用需求,例如n_predicttemptop_ptop_k等。如需要流式传输模型的预测结果,可以添加# 支持多种CallbackHandlers,例如:# 文本生成。通过回调管理器流式传输的token通过这篇文章,我们了解了如何安装和使用LangChain的GPT4All包装器,包括如何配置模型和执行文本生成。LangChain官方文档GPT4All项目主页相关学习笔记。
2024-12-20 14:48:24
569
原创 深入探索GitHub API:从安装到应用的完整指南
GitHub API是一个功能丰富且灵活的工具,能够极大地提高你的开发效率。在使用过程中,确保令牌管理的安全性,并根据需要使用API代理服务来优化访问体验。GitHub官方文档GitHub API示例代码库API速率限制和优化策略。
2024-12-20 14:25:36
638
原创 使用Comet管理你的LangChain实验:从模型训练到生产监控的完整指南
在这篇文章中,我们探讨了如何使用Comet辅助管理LangChain中的各种实验。通过初始化、参数设置以及处理回调,我们可以在Comet上实时监控和优化模型。在深度学习模型管理方面,继续研究Comet和LangChain的官方文档将会受益匪浅。
2024-12-20 10:54:14
382
原创 探索Clarifai:一个综合AI平台的强大力量
Clarifai作为一个综合的AI平台,为用户提供了强大的工具来进行AI模型的开发和应用。虽然在使用过程中可能会遇到一些挑战,但通过利用Clarifai的丰富资源和支持文档,用户可以高效地实现AI解决方案。Clarifai Python SDK 文档LangChain 生态系统文档Clarifai社区支持。
2024-12-20 10:19:40
659
原创 使用Banana生态系统在LangChain实现无服务器GPU推理
要运行Banana应用,需在GitHub上设置一个仓库。您可以使用这个指南在五分钟内上手。除此之外,Banana还提供了一个现成的LLM示例,可以在其GitHub仓库中找到。只需fork并部署到Banana即可使用。Banana提供了一种无服务器的方式来部署和推理AI模型,与LangChain的结合更是释放了强大的潜力。通过这篇文章,您应该能够认识并应用Banana生态系统的基本功能。
2024-12-20 09:04:38
693
原创 从零开始探索arXiv API:获取学术论文和文本转换的完整指南
本文介绍了如何使用 Python 包从 arXiv 上获取学术论文,并进行文本转换。arXiv API 官方文档PyMuPDF 官方文档LangChain 文档。
2024-12-20 08:08:27
700
原创 [深入探索自查询检索器:AI应用的未来]
自查询检索器是一种能够自动生成查询以检索相关信息的系统。这种方式使得数据获取过程更加智能化和自动化,减少了人工干预的必要性。通过学习数据中的模式,自查询检索器可以根据输入需求生成最合适的查询,从而提高效率和准确性。自查询检索器在AI领域的应用潜力巨大。随着技术的不断成熟,未来其应用场景必将更加多样和广泛。《深度学习》 by Ian Goodfellow矢量数据库的详细文档和使用指南,如Chroma和Pinecone。
2024-12-20 05:17:50
389
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人