liae和DF的区别:
模型来说DF更像src,正面换脸效果最佳,但其他角度如果没有对应的照片就效果极差会崩,所以弹性较低;LIAE缺点是混了dst的特征,好处是如果欠缺角度会尝试东拼西凑地合出来,效果不像src但至少还是张人脸, liae强在光影效果
运算效率上DF也用较少资源,LIAE需要更强的硬件去达致相当的效率
liae-ud和liae-udt的区别:
先撇开UD和UDT的差别,他们分别不大但加上T后资源要用更多
另外
DF使更多identity-preserved脸。
“liae”可以解决过度不同的脸型。
- u 增加相似的脸。
Liaef 训练要开random warp随机扭曲,不然会被原图带跑
本文对比了LIAE和DF两种面部换脸模型的优缺点,DF在正面效果佳但弹性低,LIAE虽有拼凑效果但光影处理强。DF更注重保留身份特征,而LIAE能适应不同脸型。此外,LIAE的训练需要开启randomwarp随机扭曲。运算效率方面,DF更节省资源。
1万+

被折叠的 条评论
为什么被折叠?



