总结
- 要学会怎样分析问题,而不是单纯拍脑袋优化
- 慢查询只是最基础的东西,要学会优化0.01秒的查询请求。
- 当发生连接阻塞时,不同状态的阻塞有不同的原因,要找到原因,如果不对症下药,就会南辕北辙
- 范例:如果本身系统内存已经超载,已经使用到了swap,而还在考虑加大缓存来优化查询,那就是自寻死路了。
- 监测与跟踪要经常做,而不是出问题才做
- 读取频繁度抽样监测
- 全监测不要搞,i/o吓死人。
- 按照一个抽样比例抽样即可。
- 针对抽样中发现的问题,可以按照特定SQL在特定时间内监测一段全查询记录,但仍要考虑i/o影响。
- 写入频繁度监测
- 基于binlog解开即可,可定时或不定时分析。
- 微慢查询抽样监测
- 高并发情况下,查询请求时间超过0.01秒甚至0.005秒的,建议酌情抽样记录。
- 连接数预警监测
- 连接数超过特定阈值的情况下,虽然数据库没有崩溃,建议记录相关连接状态。
- 读取频繁度抽样监测
- 学会通过数据和监控发现问题,分析问题,而后解决问题顺理成章。特别是要学会在日常监控中发现隐患,而不是问题爆发了才去处理和解决。
Mysql 运维优化- 存储引擎类型
- Myisam 速度快,响应快。表级锁是致命问题。
- Innodb 目前主流存储引擎
- 行级锁
- 务必注意影响结果集的定义是什么
- 行级锁会带来更新的额外开销,但是通常情况下是值得的。
- 事务提交
- 对i/o效率提升的考虑
- 对安全性的考虑
- 行级锁
- HEAP 内存引擎
- 频繁更新和海量读取情况下仍会存在锁定状况
-
- 内存使用考量
- 理论上,内存越大,越多数据读取发生在内存,效率越高
- 要考虑到现实的硬件资源和瓶颈分布
- 学会理解热点数据,并将热点数据尽可能内存化
- 所谓热点数据,就是最多被访问的数据。
- 通常数据库访问是不平均的,少数数据被频繁读写,而更多数据鲜有读写。
- 学会制定不同的热点数据规则,并测算指标。
- 热点数据规模,理论上,热点数据越少越好,这样可以更好的满足业务的增长趋势。
- 响应满足度,对响应的满足率越高越好。
- 比如依据最后更新时间,总访问量,回访次数等指标定义热点数据,并测算不同定义模式下的热点数据规模
-
- 性能与安全性考量
- 数据提交方式
- innodb_flush_log_at_trx_commit = 1 每次自动提交,安全性高,i/o压力大
- innodb_flush_log_at_trx_commit = 2 每秒自动提交,安全性略有影响,i/o承载强。
- 日志同步
- Sync-binlog =1 每条自动更新,安全性高,i/o压力大
- Sync-binlog = 0 根据缓存设置情况自动更新,存在丢失数据和同步延迟风险,i/o承载力强。
- 性能与安全本身存在相悖的情况,需要在业务诉求层面决定取舍
- 学会区分什么场合侧重性能,什么场合侧重安全
- 学会将不同安全等级的数据库用不同策略管理
-
- 存储压力优化
- 顺序读写性能远高于随机读写
- 日志类数据可以使用顺序读写方式进行
- 将顺序写数据和随机读写数据分成不同的物理磁盘,有助于i/o压力的疏解,前提是,你确信你的i/o压力主要来自于可顺序写操作(因随机读写干扰导致不能顺序写,但是确实可以用顺序写方式进行的i/o操作)。
- 运维监控体系
- 系统监控
- 服务器资源监控
- Cpu, 内存,硬盘空间,i/o压力
- 设置阈值报警
- 服务器流量监控
- 外网流量,内网流量
- 设置阈值报警
- 连接状态监控
- Show processlist 设置阈值,每分钟监测,超过阈值记录
- 服务器资源监控
- 应用监控
- 慢查询监控
- 慢查询日志
- 如果存在多台数据库服务器,应有汇总查阅机制。
- 请求错误监控
- 高频繁应用中,会出现偶发性数据库连接错误或执行错误,将错误信息记录到日志,查看每日的比例变化。
- 偶发性错误,如果数量极少,可以不用处理,但是需时常监控其趋势。
- 会存在恶意输入内容,输入边界限定缺乏导致执行出错,需基于此防止恶意入侵探测行为。
- 微慢查询监控
- 高并发环境里,超过0.01秒的查询请求都应该关注一下。
- 频繁度监控
- 写操作,基于binlog,定期分析。
- 读操作,在前端db封装代码中增加抽样日志,并输出执行时间。
- 分析请求频繁度是开发架构 进一步优化的基础
- 最好的优化就是减少请求次数!
- 慢查询监控
- 总结:
- 监控与数据分析是一切优化的基础。
- 没有运营数据监测就不要妄谈优化!
- 监控要注意不要产生太多额外的负载,不要因监控带来太多额外系统开销
Mysql 架构优化- 架构优化目标
1). 防止单点隐患
- 所谓单点隐患,就是某台设备出现故障,会导致整体系统的不可用,这个设备就是单点隐患。
- 理解连带效应,所谓连带效应,就是一种问题会引发另一种故障,举例而言,memcache+mysql是一种常见缓存组合,在前端压力很大时,如果memcache崩溃,理论上数据会通过mysql读取,不存在系统不可用情况,但是mysql无法对抗如此大的压力冲击,会因此连带崩溃。因A系统问题导致B系统崩溃的连带问题,在运维过程中会频繁出现。
- 实战范例: 在mysql连接不及时释放的应用环境里,当网络环境异常(同机房友邻服务器遭受拒绝服务攻击,出口阻塞),网络延迟加剧,空连接数急剧增加,导致数据库连接过多崩溃。
- 实战范例2:前端代码 通常我们封装 mysql_connect和memcache_connect,二者的顺序不同,会产生不同的连带效应。如果mysql_connect在前,那么一旦memcache连接阻塞,会连带mysql空连接过多崩溃。
- 连带效应是常见的系统崩溃,日常分析崩溃原因的时候需要认真考虑连带效应的影响,头疼医头,脚疼医脚是不行的。
2). 方便系统扩容
- 数据容量增加后,要考虑能够将数据分布到不同的服务器上。
- 请求压力增加时,要考虑将请求压力分布到不同服务器上。
- 扩容设计时需要考虑防止单点隐患。
3). 安全可控,成本可控
- 数据安全,业务安全
- 人力资源成本>带宽流量成本>硬件成本
- 成本与流量的关系曲线应低于线性增长(流量为横轴,成本为纵轴)。
- 规模优势
- 本教程仅就与数据库有关部分讨论,与数据库无关部门请自行参阅其他学习资料。
-
- 分布式方案
1). 分库&拆表方案
- 基本认识
- 用分库&拆表是解决数据库容量问题的唯一途径。
- 分库&拆表也是解决性能压力的最优选择。
- 分库 – 不同的数据表放到不同的数据库服务器中(也可能是虚拟服务器)
- 拆表 – 一张数据表拆成多张数据表,可能位于同一台服务器,也可能位于多台服务器(含虚拟服务器)。
- 去关联化原则
- 摘除数据表之间的关联,是分库的基础工作。
- 摘除关联的目的是,当数据表分布到不同服务器时,查询请求容易分发和处理。
- 学会理解反范式数据结构设计,所谓反范式,第一要点是不用外键,不允许Join操作,不允许任何需要跨越两个表的查询请求。第二要点是适度冗余减少查询请求,比如说,信息表,fromuid, touid, message字段外,还需要一个fromuname字段记录用户名,这样查询者通过touid查询后,能够立即得到发信人的用户名,而无需进行另一个数据表的查询。
- 去关联化处理会带来额外的考虑,比如说,某一个数据表内容的修改,对另一个数据表的影响。这一点需要在程序或其他途径去考虑。
- 分库方案
- 安全性拆分
- 将高安全性数据与低安全性数据分库,这样的好处第一是便于维护,第二是高安全性数据的数据库参数配置可以以安全优先,而低安全性数据的参数配置以性能优先。参见运维优化相关部分。
- 顺序写数据与随机读写数据分库
- 顺序数据与随机数据区分存储地址,保证物理i/o优化。这个实话说,我只听说了概念,还没学会怎么实践。
- 基于业务逻辑拆分
- 根据数据表的内容构成,业务逻辑拆分,便于日常维护和前端调用。
- 基于业务逻辑拆分,可以减少前端应用请求发送到不同数据库服务器的频次,从而减少链接开销。
- 基于业务逻辑拆分,可保留部分数据关联,前端web工程师可在限度范围内执行关联查询。
- 基于负载压力拆分
- 基于负载压力对数据结构拆分,便于直接将负载分担给不同的服务器。
- 基于负载压力拆分,可能拆分后的数据库包含不同业务类型的数据表,日常维护会有一定的烦恼。
- 安全性拆分
- 分表方案
- 数据量过大或者访问压力过大的数据表需要切分
- 忙闲分表
- 单数据表字段过多,可将频繁更新的整数数据与非频繁更新的字符串数据切分
- 范例 user表 ,个人简介,地址,QQ号,联系方式,头像 这些字段为字符串类型,更新请求少; 最后登录时间,在线时常,访问次数,信件数这些字段为整数型字段,更新频繁,可以将后面这些更新频繁的字段独立拆出一张数据表,表内容变少,索引结构变少,读写请求变快。
- 横向切表
- 等分切表,如哈希切表或其他基于对某数字取余的切表。等分切表的优点是负载很方便的分布到不同服务器;缺点是当容量继续增加时无法方便的扩容,需要重新进行数据的切分或转表。而且一些关键主键不易处理。
- 递增切表,比如每1kw用户开一个新表,优点是可以适应数据的自增趋势;缺点是往往新数据负载高,压力分配不平均。
- 日期切表,适用于日志记录式数据,优缺点等同于递增切表。
- 个人倾向于递增切表,具体根据应用场景决定。
- 热点数据分表
- 将数据量较大的数据表中将读写频繁的数据抽取出来,形成热点数据表。通常一个庞大数据表经常被读写的内容往往具有一定的集中性,如果这些集中数据单独处理,就会极大减少整体系统的负载。
- 热点数据表与旧有数据关系
- 可以是一张冗余表,即该表数据丢失不会妨碍使用,因源数据仍存在于旧有结构中。优点是安全性高,维护方便,缺点是写压力不能分担,仍需要同步写回原系统。
- 可以是非冗余表,即热点数据的内容原有结构不再保存,优点是读写效率全部优化;缺点是当热点数据发生变化时,维护量较大。
- 具体方案选择需要根据读写比例决定,在读频率远高于写频率情况下,优先考虑冗余表方案。
- 热点数据表可以用单独的优化的硬件存储,比如昂贵的闪存卡或大内存系统。
- 热点数据表的重要指标
- 热点数据的定义需要根据业务模式自行制定策略,常见策略为,按照最新的操作时间;按照内容丰富度等等。
- 数据规模,比如从1000万条数据,抽取出100万条热点数据。
- 热点命中率,比如查询10次,多少次命中在热点数据内。
- 理论上,数据规模越小,热点命中率越高,说明效果越好。需要根据业务自行评估。
- 热点数据表的动态维护
- 加载热点数据方案选择
- 定时从旧有数据结构中按照新的策略获取
- 在从旧有数据结构读取时动态加载到热点数据
- 剔除热点数据方案选择
- 基于特定策略,定时将热点数据中访问频次较少的数据剔除
- 如热点数据是冗余表,则直接删除即可,如不是冗余表,需要回写给旧有数据结构。
- 加载热点数据方案选择
- 通常,热点数据往往是基于缓存或者key-value 方案冗余存储,所以这里提到的热点数据表,其实更多是理解思路,用到的场合可能并不多….
- 表结构设计
- 查询冗余表设计
- 涉及分表操作后,一些常见的索引查询可能需要跨表,带来不必要的麻烦。确认查询请求远大于写入请求时,应设置便于查询项的冗余表。
- 实战范例,
- 用户分表,将用户库分成若干数据表
- 基于用户名的查询和基于uid的查询都是高并发请求。
- 用户分表基于uid分成数据表,同时基于用户名做对应冗余表。
- 冗余表要点
- 数据一致性,简单说,同增,同删,同更新。
- 可以做全冗余,或者只做主键关联的冗余,比如通过用户名查询uid,再基于uid查询源表。
- 中间数据表
- 为了减少会涉及大规模影响结果集的表数据操作,比如count,sum操作。应将一些统计类数据通过中间数据表保存。
- 中间数据表应能通过源数据表恢复。
- 实战范例:
- 论坛板块的发帖量,回帖量,每日新增数据等
- 网站每日新增用户数等。
- 后台可以通过源数据表更新该数字。
- 历史数据表
- 历史数据表对应于热点数据表,将需求较少又不能丢弃的数据存入,仅在少数情况下被访问。
- 查询冗余表设计
2). 主从架构
- 基本认识
- 读写分离对负载的减轻远远不如分库分表来的直接。
- 写压力会传递给从表,只读从库一样有写压力,一样会产生读写锁!
- 一主多从结构下,主库是单点隐患,很难解决(如主库当机,从库可以响应读写,但是无法自动担当主库的分发功能)
- 主从延迟也是重大问题。一旦有较大写入问题,如表结构更新,主从会产生巨大延迟。
- 应用场景
- 在线热备
- 异地分布
- 写分布,读统一。
- 仍然困难重重,受限于网络环境问题巨多!
- 自动障碍转移
- 主崩溃,从自动接管
- 个人建议,负载均衡主要使用分库方案,主从主要用于热备和障碍转移。
- 潜在优化点
- 为了减少写压力,有些人建议主不建索引提升i/o性能,从建立索引满足查询要求。个人认为这样维护较为麻烦。而且从本身会继承主的i/o压力,因此优化价值有限。该思路特此分享,不做推荐。
3). 故障转移处理
- 要点
- 程序与数据库的连接,基于虚地址而非真实ip,由负载均衡系统监控。
- 保持主从结构的简单化,否则很难做到故障点摘除。
- 思考方式
- 遍历对服务器集群的任何一台服务器,前端web,中间件,监控,缓存,db等等,假设该服务器出现故障,系统是否会出现异常?用户访问是否会出现异常。
- 目标:任意一台服务器崩溃,负载和数据操作均会很短时间内自动转移到其他服务器,不会影响业务的正常进行。不会造成恶性的数据丢失。(哪些是可以丢失的,哪些是不能丢失的)
-
- 缓存方案
1). 缓存结合数据库的读取
- Memcached是最常用的缓存系统
- Mysql 最新版本已经开始支持memcache插件,但据牛人分析,尚不成熟,暂不推荐。
- 数据读取
- 并不是所有数据都适合被缓存,也并不是进入了缓存就意味着效率提升。
- 命中率是第一要评估的数据。
- 如何评估进入缓存的数据规模,以及命中率优化,是非常需要细心分析的。
- 实景分析: 前端请求先连接缓存,缓存未命中连接数据库,进行查询,未命中状态比单纯连接数据库查询多了一次连接和查询的操作;如果缓存命中率很低,则这个额外的操作非但不能提高查询效率,反而为系统带来了额外的负载和复杂性,得不偿失。
- 相关评估类似于热点数据表的介绍。
- 善于利用内存,请注意数据存储的格式及压缩算法。
- Key-value 方案繁多,本培训文档暂不展开。
2). 缓存结合数据库的写入
- 利用缓存不但可以减少数据读取请求,还可以减少数据库写入i/o压力
- 缓存实时更新,数据库异步更新
- 缓存实时更新数据,并将更新记录写入队列
- 可以使用类似mq的队列产品,自行建立队列请注意使用increment来维持队列序号。
- 不建议使用 get 后处理数据再set的方式维护队列
- 测试范例:
- 范例1
- 测试范例:
$var=Memcache_get($memcon,”var”);
$var++;
memcache_set($memcon,”var”,$var);
这样一个脚本,使用apache ab去跑,100个并发,跑10000次,然后输出缓存存取的数据,很遗憾,并不是1000,而是5000多,6000多这样的数字,中间的数字全在 get & set的过程中丢掉了。
原因,读写间隔中其他并发写入,导致数据丢失。
-
-
-
- 范例2
-
-
用memcache_increment来做这个操作,同样跑测试
会得到完整的10000,一条数据不会丢。
-
-
- 结论: 用increment存储队列编号,用标记+编号作为key存储队列内容。
- 后台基于缓存队列读取更新数据并更新数据库
- 基于队列读取后可以合并更新
- 更新合并率是重要指标
- 实战范例:
-
某论坛热门贴,前端不断有views=views+1数据更新请求。
缓存实时更新该状态
后台任务对数据库做异步更新时,假设执行周期是5分钟,那么五分钟可能会接收到这样的请求多达数十次乃至数百次,合并更新后只执行一次update即可。
类似操作还包括游戏打怪,生命和经验的变化;个人主页访问次数的变化等。
-
- 异步更新风险
- 前后端同时写,可能导致覆盖风险。
- 使用后端异步更新,则前端应用程序就不要写数据库,否则可能造成写入冲突。一种兼容的解决方案是,前端和后端不要写相同的字段。
- 实战范例:
- 前后端同时写,可能导致覆盖风险。
- 异步更新风险
用户在线上时,后台异步更新用户状态。
管理员后台屏蔽用户是直接更新数据库。
结果管理员屏蔽某用户操作完成后,因该用户在线有操作,后台异步更新程序再次基于缓存更新用户状态,用户状态被复活,屏蔽失效。
-
-
- 缓存数据丢失或服务崩溃可能导致数据丢失风险。
- 如缓存中间出现故障,则缓存队列数据不会回写到数据库,而用户会认为已经完成,此时会带来比较明显的用户体验问题。
- 一个不彻底的解决方案是,确保高安全性,高重要性数据实时数据更新,而低安全性数据通过缓存异步回写方式完成。此外,使用相对数值操作而不是绝对数值操作更安全。
- 范例:支付信息,道具的购买与获得,一旦丢失会对用户造成极大的伤害。而经验值,访问数字,如果只丢失了很少时间的内容,用户还是可以容忍的。
- 范例:如果使用 Views=Views+…的操作,一旦出现数据格式错误,从binlog中反推是可以进行数据还原,但是如果使用Views=特定值的操作,一旦缓存中数据有错误,则直接被赋予了一个错误数据,无法回溯!
- 异步更新如出现队列阻塞可能导致数据丢失风险。
- 异步更新通常是使用缓存队列后,在后台由cron或其他守护进程写入数据库。
- 如果队列生成的速度>后台更新写入数据库的速度,就会产生阻塞,导致数据越累计越多,数据库响应迟缓,而缓存队列无法迅速执行,导致溢出或者过期失效。
- 缓存数据丢失或服务崩溃可能导致数据丢失风险。
-
本教程由尚硅谷教育大数据研究院出品,如需转载请注明来源。