五大常用算法之一:分治算法

1 篇文章 0 订阅
1 篇文章 0 订阅

分治算法

一、基本概念

   在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

    任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。


二、基本思想及策略

   分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之

   分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

   如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。


三、分治法适用的情况

    分治法所能解决的问题一般具有以下几个特征:

    1) 该问题的规模缩小到一定的程度就可以容易地解决

    2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质

    3) 利用该问题分解出的子问题的解可以合并为该问题的解;

    4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好


四、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

    step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

    step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

    step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

    Divide-and-Conquer(P)

    1. if |P|≤n0

    2. then return(ADHOC(P))

    3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk

    4. for i←1 to k

    5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi

    6. T ← MERGE(y1,y2,...,yk) △ 合并子问题

    7. return(T)

    其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。


五、分治法的复杂性分析

    一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

T(n)= k T(n/m)+f(n)

    通过迭代法求得方程的解:

    递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当                  mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。


六、可使用分治法求解的一些经典问题

(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择

(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔

七、依据分治法设计程序时的思维过程

    实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法
2、然后考虑随着问题规模增大时的求解方法
3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。

 

HDU1402

   A * B Problem Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9856    Accepted Submission(s): 1626


Problem Description
Calculate A * B.


 

Input
Each line will contain two integers A and B. Process to end of file.

Note: the length of each integer will not exceed 50000.


 

Output
For each case, output A * B in one line.


 

Sample Input
  
  
1 2 1000 2


 

Sample Output
  
  
2 2000

 

import java.io.*;
import java.util.*;

class FFT{
    final double PI=Math.acos(-1.0);
    class Complex{
        public double r,i;
        public Complex(double r,double i){
            this.r=r; this.i=i;
        }
        public Complex add(Complex c){
            return new Complex(r+c.r, i+c.i);
        }
        public Complex sub(Complex c){
            return new Complex(r-c.r, i-c.i);
        }
        public Complex mul(Complex c){
            return new Complex(r*c.r-i*c.i, r*c.i+i*c.r);
        }
    }
    Complex[] fft(Complex[] a, double alpha){ //折半的是系数a的长度
        int n=a.length;
        if( n==1 ) {
            return a;
        }
        Complex[] a0=new Complex[n/2];
        for(int i=0;i<n;i+=2) {
            a0[i/2]=new Complex(a[i].r, a[i].i);
        }
        Complex[] a1=new Complex[n/2];
        for(int i=1;i<n;i+=2) {
            a1[i/2]=new Complex(a[i].r, a[i].i);
        }
        Complex[] y0=fft(a0, alpha);
        Complex[] y1=fft(a1, alpha);
        Complex wn=new Complex(Math.cos(alpha*2*PI/n), Math.sin(alpha*2*PI/n));
        Complex w=new Complex(1.0, 0), tmp;
        Complex[] y=new Complex[n];
        for(int i=0;i<n/2;i++){
            tmp=w.mul(y1[i]);
            y[i]=y0[i].add(tmp);
            y[i+n/2]=y0[i].sub(tmp);
            w=w.mul(wn);
        }
        return y;
    }
    Complex[] toComplex(int[] a, int s){
        Complex[] ret=new Complex[s];
        for(int i=0;i<ret.length;i++){
            if( i<a.length) {
                ret[i]=new Complex((double)a[i], 0.0);
            }
            else {
                ret[i]=new Complex(0.0, 0.0);
            }
        }
        return ret;
    }
    long[] polyMultiply(int[] c0,int[] c1){
        int s=1;
        while( s<c0.length+c1.length ) {
            s<<=1;
        }
        Complex[] a0=toComplex(c0, s);
        Complex[] a1=toComplex(c1, s);
        Complex[] y0=fft(a0, 1.0);
        Complex[] y1=fft(a1, 1.0);
        for(int i=0;i<y0.length;i++) {
            y0[i]=y0[i].mul(y1[i]);
        }
        Complex[] a=fft(y0, -1.0);
        for(int i=0;i<a.length;i++) {
            a[i].r/=s; a[i].i/=s;
        }
        long[] c=new long[s];
        //System.out.println("debug:\n");for(int i=0;i<s;i++) System.out.printf("%.5f ",a[i].r); System.out.println();
        for(int i=0;i<c.length;i++) {
            c[i]=(long)(a[i].r+0.5);
        }
        //System.out.println("debug:\n");for(int i=0;i<s;i++) System.out.printf("%d ",c[i]); System.out.println();
        return c;
    }
}

class FastMul{
    final int SIZE=3;
    final int BASE=1000;
    int[] toIntArray(String a){
        int[] ret=new int[a.length()/SIZE+1];
        for(int e=0, i=a.length()-SIZE;i>-SIZE;i-=SIZE){
            int val=0;
            for(int j=i;j<i+SIZE;j++) {
                if( j>=0 ) {
                    val=10*val+a.charAt(j)-'0';
                }
            }
            ret[e++]=val;
        }
        return ret;
    }
    public long[] mul(String a,String b){
        int[] c0=toIntArray(a);
        int[] c1=toIntArray(b);
        FFT f=new FFT();
        long[] res=f.polyMultiply(c0, c1);
        long c=0;
        for(int i=0;i<res.length;i++){
            c+=res[i]; res[i]=(int)(c%BASE); c/=BASE;
        }
        int i=res.length-1;
        while( i>0 && res[i]==0 ) {
            i--;
        }
        System.out.printf("%d", res[i--]);
        while( i>=0 ) {
            System.out.printf("%03d", (int)res[i--]);
        }
        System.out.println();
        return res;
    }
}

public class a1402{
   
   
    void test(){
        FastMul f=new FastMul();
        Scanner cin=new Scanner(new BufferedReader( new InputStreamReader(System.in) ));
        while( cin.hasNext() ){
            String a,b;
            a=cin.next();
            b=cin.next();
            f.mul(a, b);
            //BigInteger A=new BigInteger(a);
           // BigInteger B=new BigInteger(b);
            //System.out.println(A.multiply(B));
        }
    }
    public static void main(String[] args){
        a1402 a=new a1402();
        a.test();
    }
}

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值