分治算法
一、基本概念
在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
四、分治法的基本步骤
分治法在每一层递归上都有三个步骤:
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
7. return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
五、分治法的复杂性分析
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
T(n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当 mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。
(8)最接近点对问题
HDU1402
A * B Problem Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9856 Accepted Submission(s): 1626
Note: the length of each integer will not exceed 50000.
1 2 1000 2
2 2000
import java.io.*;
import java.util.*;
class FFT{
final double PI=Math.acos(-1.0);
class Complex{
public double r,i;
public Complex(double r,double i){
this.r=r; this.i=i;
}
public Complex add(Complex c){
return new Complex(r+c.r, i+c.i);
}
public Complex sub(Complex c){
return new Complex(r-c.r, i-c.i);
}
public Complex mul(Complex c){
return new Complex(r*c.r-i*c.i, r*c.i+i*c.r);
}
}
Complex[] fft(Complex[] a, double alpha){ //折半的是系数a的长度
int n=a.length;
if( n==1 ) {
return a;
}
Complex[] a0=new Complex[n/2];
for(int i=0;i<n;i+=2) {
a0[i/2]=new Complex(a[i].r, a[i].i);
}
Complex[] a1=new Complex[n/2];
for(int i=1;i<n;i+=2) {
a1[i/2]=new Complex(a[i].r, a[i].i);
}
Complex[] y0=fft(a0, alpha);
Complex[] y1=fft(a1, alpha);
Complex wn=new Complex(Math.cos(alpha*2*PI/n), Math.sin(alpha*2*PI/n));
Complex w=new Complex(1.0, 0), tmp;
Complex[] y=new Complex[n];
for(int i=0;i<n/2;i++){
tmp=w.mul(y1[i]);
y[i]=y0[i].add(tmp);
y[i+n/2]=y0[i].sub(tmp);
w=w.mul(wn);
}
return y;
}
Complex[] toComplex(int[] a, int s){
Complex[] ret=new Complex[s];
for(int i=0;i<ret.length;i++){
if( i<a.length) {
ret[i]=new Complex((double)a[i], 0.0);
}
else {
ret[i]=new Complex(0.0, 0.0);
}
}
return ret;
}
long[] polyMultiply(int[] c0,int[] c1){
int s=1;
while( s<c0.length+c1.length ) {
s<<=1;
}
Complex[] a0=toComplex(c0, s);
Complex[] a1=toComplex(c1, s);
Complex[] y0=fft(a0, 1.0);
Complex[] y1=fft(a1, 1.0);
for(int i=0;i<y0.length;i++) {
y0[i]=y0[i].mul(y1[i]);
}
Complex[] a=fft(y0, -1.0);
for(int i=0;i<a.length;i++) {
a[i].r/=s; a[i].i/=s;
}
long[] c=new long[s];
//System.out.println("debug:\n");for(int i=0;i<s;i++) System.out.printf("%.5f ",a[i].r); System.out.println();
for(int i=0;i<c.length;i++) {
c[i]=(long)(a[i].r+0.5);
}
//System.out.println("debug:\n");for(int i=0;i<s;i++) System.out.printf("%d ",c[i]); System.out.println();
return c;
}
}
class FastMul{
final int SIZE=3;
final int BASE=1000;
int[] toIntArray(String a){
int[] ret=new int[a.length()/SIZE+1];
for(int e=0, i=a.length()-SIZE;i>-SIZE;i-=SIZE){
int val=0;
for(int j=i;j<i+SIZE;j++) {
if( j>=0 ) {
val=10*val+a.charAt(j)-'0';
}
}
ret[e++]=val;
}
return ret;
}
public long[] mul(String a,String b){
int[] c0=toIntArray(a);
int[] c1=toIntArray(b);
FFT f=new FFT();
long[] res=f.polyMultiply(c0, c1);
long c=0;
for(int i=0;i<res.length;i++){
c+=res[i]; res[i]=(int)(c%BASE); c/=BASE;
}
int i=res.length-1;
while( i>0 && res[i]==0 ) {
i--;
}
System.out.printf("%d", res[i--]);
while( i>=0 ) {
System.out.printf("%03d", (int)res[i--]);
}
System.out.println();
return res;
}
}
public class a1402{
void test(){
FastMul f=new FastMul();
Scanner cin=new Scanner(new BufferedReader( new InputStreamReader(System.in) ));
while( cin.hasNext() ){
String a,b;
a=cin.next();
b=cin.next();
f.mul(a, b);
//BigInteger A=new BigInteger(a);
// BigInteger B=new BigInteger(b);
//System.out.println(A.multiply(B));
}
}
public static void main(String[] args){
a1402 a=new a1402();
a.test();
}
}