数据结构与算法基础 第六章 图 思维导图

该博客围绕数据结构中的图展开,以思维导图形式呈现相关内容,涵盖图在数据结构领域的知识要点,有助于理解图的概念、特性及应用等信息技术相关内容。

在这里插入图片描述

### 数据结构算法 第一章 绪论 思维导图 简单版 以下是针对数据结构算法第一章绪论的思维导图总结,涵盖了数据结构研究三要素、数据存储结构、操作运算、抽象数据类型(ADT)、时间复杂度和渐进表示法等内容。 --- #### 1. 数据结构的研究三要素 - **逻辑结构** 描述数据元素之间的关系,分为线性结构(如数组、链表)和非线性结构(如树、)。[^3] - **存储结构** 数据在计算机中的物理存储方式,包括顺序存储结构和链式存储结构。[^1] - **操作运算** 对数据进行的一系列操作,例如插入、删除、查找等。 --- #### 2. 数据存储结构 - **顺序存储结构** 使用连续的内存空间保存数据元素,适合随机访问。 - **链式存储结构** 不需要连续的存储空间,通过指针链接各个节点。[^1] --- #### 3. 抽象数据类型 (Abstract Data Type, ADT) - 是一种数学模型,定义了一组数据对象及其上的操作。[^4] - 特点:强调行为而非具体实现细节,提供更高的封装性和灵活性。 --- #### 4. 时间复杂度 - 衡量算法运行时间随输入规模变化的增长趋势。 - 计算方法:统计基本操作的执行次数作为时间复杂度的依据。[^3] --- #### 5. 渐进表示法 - **大O记号 (Big-O Notation)** 表示算法最坏情况下的时间复杂度上限。 - **Ω记号 (Omega Notation)** 表示算法最好情况下的时间复杂度下限。 - **Θ记号 (Theta Notation)** 同时表示算法的时间复杂度上下界。[^3] --- #### 6. 空间复杂度 - 衡量算法运行过程中所需的额外存储空间。[^2] - 包括固定部分(如变量、常量占用的空间)和动态部分(如递归栈、临时分配的内存)。 --- ### 示例代码片段 以下是一个简单的代码示例,展示如何计算一个数组的最大值,并分析其时间复杂度: ```python def find_max(arr): max_value = arr[0] # 初始化最大值为第一个元素 O(1) for i in range(1, len(arr)): # 循环遍历数组 O(n) if arr[i] > max_value: # 比较当前元素最大值 O(1) max_value = arr[i] # 更新最大值 O(1) return max_value # 返回最大值 O(1) # 主函数入口 if __name__ == "__main__": array = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] print(find_max(array)) # 输出最大值 ``` 此代码的时间复杂度为 \(O(n)\),因为循环体内的比较和赋值操作均为常数时间,整体取决于数组长度 \(n\) 的大小。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值