C#+web=? 微软Blazor

C#开发可以用Blazor在今后写前端渲染的网页了!

 

- C#(C sharp)是什么?

C#是微软公司发布的一种面向对象的、运行于.NET Framework和.NET Core(完全开源,跨平台)之上的高级程序设计语言。

 

- 为什么会出现Blazor?

我觉得起因是因为浏览器支持WebAssembly,WebAssembly是一种新的编码方式,可以在现代的网络浏览器中运行二进制格式文件,以接近原生的性能运行。Blazor 尝试使用WebAssembly和DotNetAnywhere将.NET带回到浏览器。

 

 

 

 

除了用C#来开发之外,还可以让C#运行在浏览器(使用WebAssembly)上,这样dotnet的众多api我们都可以在浏览器使用了。

 

 

 

Blazor文档齐全,

https://docs.microsoft.com/zh-cn/aspnet/core/blazor/get-started?view=aspnetcore-3.1&tabs=visual-studiohttps://docs.microsoft.com/zh-cn/aspnet/core/blazor/get-started?view=aspnetcore-3.1&tabs=visual-studio

 

按照官网指示,先安装 .NET Core 3.1 SDK。我使用的是mac环境,直接下载dotnet的pkg安装包安装。安装之后在终端输入,安装Blazor的模板:

dotnet new -i Microsoft.AspNetCore.Components.WebAssembly.Templates::3.2.0-preview2.20160.5
 

我使用的是 Visual Studio Code,安装C#插件

 

 

 

终端cd到合适的文件目录,输入:

dotnet new blazorwasm -o WebApplicationMix


用Visual Studio Code打开。终端输入:

dotnet run


浏览器打开https://localhost:5001/,初次体验Blazor

 

 

 

我比较看重还是Blazor可以调用dotnet提供的一个机器学习库。BlazorML5,为Blazor提供了ML.NET的功能。

 

- ML.NET

开源和跨平台的机器学习框架,它可以实现

情绪分析、产品推荐、价格预测、物体检测、图像分类等等。微软的api梳理得更为接近应用场景。代码风格也比较简洁:

//Step 1. Create a ML Context
var ctx = new MLContext();


//Step 2. Read in the input data for model training
IDataView dataReader = ctx.Data
    .LoadFromTextFile<MyInput>(dataPath, hasHeader: true);


//Step 3. Build your estimator
IEstimator<ITransformer> est = ctx.Transforms.Text
    .FeaturizeText("Features", nameof(SentimentIssue.Text))
    .Append(ctx.BinaryClassification.Trainers
        .LbfgsLogisticRegression("Label", "Features"));


//Step 4. Train your Model
ITransformer trainedModel = est.Fit(dataReader);


//Step 5. Make predictions using your model
var predictionEngine = ctx.Model
    .CreatePredictionEngine<MyInput, MyOutput>(trainedModel);


var sampleStatement = new MyInput { Text = "This is a horrible movie" };


var prediction = predictionEngine.Predict(sampleStatement);


 

推荐关注Blazor~


欢迎在MIXLAB的前端社群里进行交流,

赞赏后可得群二维码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值