上一期:《ACI,一种全新的人工智能艺术与时尚创意视角》
美学 Aesthetics
一词最早由德国哲学家鲍姆嘉通(Alexander Gottlieb Baumgarten,1714-1762)提出,这个词源于希腊语 “Aesthetica”,原意为 “感性、感觉” 。
鲍姆嘉通将美学界定为研究那种低于理性能力的一种类理性能力,即感性,而感性的完善就是美。
在美学出现的地方,美学的概念通常来自于品味的概念。所以在 18 世纪,品味理论在一定程度上是对理性主义兴起的纠正,尤其是适用于美和利己主义的兴起,尤其是应用于美德。
鲍姆嘉通与其著作
当基于抽象数学推理的可编程数字电脑在 20 世纪 40 年代被发明出来时,一批科学家就开始严肃地探讨人工智能的可能性。半个多世纪过去了,AI 正悄然地塑造着我们的审美选择,它通过更加智能的算法提供我们希望看到和听到的东西。
近年来,AI 在艺术、音乐、诗歌等创意领域取得飞快进步,并被应用于设计时尚产品、logo、专辑封面以及其他文化创意领域。
ANNAKIKI 与华为智能手机AI共同设计的作品
让AI学会欣赏服装
人们描述服装的方式通常是 “正式的” 或 “非正式的” ,这与穿衣者将要参与的活动以及相应场景密切相关。然而,最近的相关研究通常集中于从服装图像中准确地识别或提取视觉特征(例如袖长度、颜色分布和服装图案)。为此,Jia Jia 等人针对性地提出了一种三层映射关系:
视觉特征—图像色彩空间—美学词汇
- 视觉特征 (visual features)
是服装图像的低层次信息,包括颜色特征和图案特征。
- 图像色彩空间 (image-scale space)
来自 Kobayashi 于1995提出来的美学理论,指一个广泛应用于艺术设计的二维空间(warm-cool和hard-soft分别为色彩空间的x轴和y轴尺度)。
- 审美词汇 (aesthetic words)
则是高层次的信息,主要包括 “正式” 和 “休闲” 等描述性词汇。
上图则是具体的服装图像与其对应的视觉特征(颜色分布、领口形状等服装细节)、审美词汇(Dignified、Chic等)。
利用艺术领域的图像色彩空间作为中间层,将视觉特征映射到图像色彩空间;然后根据相似性计算的语义距离,将在网购等生活场景中常用的美学词汇映射到图像色彩空间。
研究者还利用该方法对 2005-2015 年男装的时尚趋势进行了分析。
左图为将计算出的每年重心坐标显示在图像色彩尺度空间中。
右图为该方法下分析得到的Jean Paul Gaultier(法国设计师同名品牌,他本人在2003–2010年曾任爱马仕创意总监)在2005-2014年里的“美学趋势”。
Jean Paul Gaultier 2007 春夏高级定制的 013-015LOOK
服装的美学特征评估
近年来,由于服装产品的视觉外观对消费者的决策有重大影响,但人们却很少考虑其中的一种重要特征——美学特征。
它在时尚行业中扮演着至关重要的角色,因为消费者的决定很大程度上取决于服装是否符合他们的审美,然而传统的图像特征不能直接描绘这一点。为了弥合这一差距,Wenhui Yu等人引入了与用户偏好高度相关的审美信息。
语义信息(Semantic information)和美学信息(Aesthetic information)的提取过程对比
为了实现这一点,研究人员用一个预先训练好的神经网络(Aesthetic Network,图中的红色方框)提取美学特征,这个神经网络模型是一个针对美学评估任务而训练的受大脑启发的深度结构,它主要由几条并行路径(Parallel Pathways)和一个高层次合成网络(High-level Synthesis Network)组成,如下图所示。
并行路径主要提取低层次的特征,包括低级特征(色调、饱和度、明度) 和抽象特征 (路径的特征图)。将其作为高层次合成网络的输入,并与美学评级预测的路径进行同步调参。
考虑到审美偏好随用户的不同和时间的显著差异,使用了一种新的张量分解模型,以个性化的方式融入审美特征。
这里的个性化主要考虑两个主要因素:
是否符合用户的偏好?
是否在适合的时间?
如果服装产品的外观很吸引人,风格适合用户的品味,质量很好,价格也可以接受,那么服装产品就适合用户的喜好。如果服装符合时下的流行趋势,那它是当季且时髦的。
Runway Magazine 2021 issue封面
AI 穿搭:小改动大变化
可可·香奈儿曾说过:
“在你出门之前,照镜子取下一件单品。”
香奈儿女士(Photo by Horst P. Horst )
考虑到一套服装,什么样的细节改变最能提高整体的时尚度?
Wei-Lin Hsiao 等人提出了 Fashion++,该方法提出了通过对全身服装搭配进行一个很小的调整,从而对整体的时尚度产生巨大提升。
卷起裤脚产生完全不同的视觉效果
无论是脱下配饰,选择一件高领口的衬衫,还是换一条深色的裤子,有时细微的调整可以让现有搭配明显更时尚。这一点对消费者和设计师都具有实际价值。
对于日常的消费者来说,关于如何搭配服装的建议可以让他们调整自己的搭配更精致得体,而不是从零开始买一整套全新的搭配。对于时装设计师来说,改变已有的设计在一定程度上可以激发新的创作灵感。
Fashion++ 为不同服装搭配提供了一系列连续变化的改进建议,用户可以从中选择他们想要的搭配。该模型主要由深度图像生成神经网络组成,它能在服装编码条件下学习合成服装图像,从而拥有单独修改合身度、颜色、图案、面料等属性的能力。搭配的建议从换一件新衣服到调整颜色,穿它的方式(例如,卷起袖子),或它的合身度(例如,使裤子更宽松)。
时尚神经美学
从工程的角度描述美,可以是优雅的证明或漂亮的图表。而更广泛的美学可以包括更抽象的形式,即 “创造性表达和愉悦感增强” 。随着深度学习逐渐被广泛地应用,所谓的神经美学(Neuroaesthetics)也逐渐形成,这可以在最近的 “艺术黑客” 中看到,例如 Deepdream,NeuralTalk 和 Stylenet。
使用Deepdream Generator得到的图像
Stylenet的结果演示
Edgar Simo-Serra 等人便将神经美学应用到时尚领域,尝试通过建模的方式让人工智能理解和感知时尚。研究人员分析了一个大型社交网站,其中包含 144,169 个用户帖子,其中包含不同的图像、文本和元信息。
每一篇帖子它总是由至少一个图像和附加的元数据组成,可以采取标签、名词和形容词的列表、离散值或任意文本的形式。
研究的目标是学习和预测一个人在照片上看起来的时尚度,并建议用户可以通过穿搭改进来提升她/他的吸引力。为了能够在更高层次上理解时尚度,研究人员利用条件随机场 (Conditional Random Field) 来学习不同的服装特征(Colors、Singles、Garments),用户类型(Fans、Personal)和背景信息(Location、Scene)。
条件随机场模型和每个节点所使用的特征
系统得到的样例结果,针对现有的搭配进行评分,并生成搭配推荐。括号中的数值是范围为 1-10 的时尚度评分,其数值越高,系统则认为搭配越时尚。
这些研究都让 AI 理解时尚和审美更进了一步,也希望更多研究人员能针对这一具有挑战性的任务做出更多新的成果。
以上就是本期的所有内容了,感谢您能看到最后,如果对您有帮助的话请多多点赞和关注 FashionHack (≧∀≦)ゞ。
-END-
FASHIONHACK 专栏作者
石多恩 Stone
本科专业是智能科学与技术
东华大学服装设计与工程专业硕士(9月)
探索方向:将AI技术应用于服装时尚领域
全平台ID:石多恩_Ston1
Nigel | 文本校对
小杜 | 编辑助理
MooDesign | 排版建议
春FANG | 专栏主编
加入AI 时尚社群请备注:AI 时尚
注:Codejoy 于 2021 年获得前阿里巴巴 CEO 陆兆禧和清华大学汤筠博士创立的『禧筠资本』千万人民币天使融资。
❤️✖️????
*待续
参考文献
关注后查看