
机器学习
海蛋蛋
这个作者很懒,什么都没留下…
展开
-
梯度下降法
1、梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数J(θ0,θ1) 的最小值。2、梯度下降的思想是:开始时我们随机选择一个参数的组合( θ0,θ1,...,θn),计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到到到一个局部最小值( local minimum) , 因为我们并没有尝试完所有的参数组合,所以不能确定我们得到原创 2017-04-30 21:59:10 · 736 阅读 · 0 评论 -
机器学习中的代价函数
1、在线性回归中我们有一个像这样的训练集, m 代表了训练样本的数量,比如 m = 47。而我们的假设函数,也就是用来进行预测的函数,是这样的线性函数形式: 2、接下来为型选择合适的参数θ0 和 θ1,这两个参数称为模型参数。在房价问题这个例子中便是直线的斜率和在 y 轴上的截距。我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值原创 2017-04-30 21:51:28 · 1289 阅读 · 0 评论 -
机器学习相关内容介绍,包括有监督、无监督学习,线性回归分类问题等
1、什么是机器学习? (1)、Arthur Samuel。他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域。 (2)、Tom。一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T 时的性能有所提升。 (3)、作者认为经验e 就是程序上万次的自我练习的经验,而任务t 就是下棋。性能度量值p原创 2017-04-30 17:06:33 · 3972 阅读 · 0 评论