2019牛客暑期多校训练营(第一场),A题(笛卡尔树)

题意转换过来之后大概就是建立两个数组a[n].b[n]的笛卡尔树,并求出这两棵笛卡尔树从key=1开始能够同构的最大子树。
代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<cmath>
using namespace std;
const int maxn=1e5+5;
int a[maxn],b[maxn],n;
int f1[maxn],l1[maxn],r1[maxn],root1;
int f2[maxn],l2[maxn],r2[maxn],root2;
 
int build(int *arr,int *f,int *l,int *r)
{
    for(int i=1;i<=n;++i)    f[i]=l[i]=r[i]=0;
    stack<int> st;
    int rt,last;
    for(int i=1;i<=n;++i)
    {
        last=0;
        while(!st.empty())
        {
            if(arr[st.top()]<arr[i])
            {
                rt=st.top();
                if(r[rt])
                {
                    f[r[rt]]=i;
                    l[i]=r[rt];
                }
                r[rt]=i;
                f[i]=rt;
                break;
            }
            last=st.top(); st.pop();
        }
        if(st.empty()&&last)
        {
            f[last]=i;
            l[i]=last;
        }
        st.push(i);
    }
    while(!st.empty())  rt=st.top(), st.pop();
    return rt;
}
 
int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;++i)    scanf("%d",&a[i]);
        for(int i=1;i<=n;++i)    scanf("%d",&b[i]);
        root1=build(a,f1,l1,r1);
        root2=build(b,f2,l2,r2);
        int ans=1;
        for(int i=2;i<=n;++i)
        {
            if(f1[i]==i-1&&f2[i]==i-1||l1[i]==l2[i])    ++ans;//根据笛卡尔树的性质,如果a[],b[]中i都是i-1的孩子,或者a[],b[]中i是i-1的父亲或祖先,但它们的左节点相同,那么子树同构
            else break;
        }
        printf("%d\n",ans);
    }
    return 0;
}

TIPS:根据笛卡尔树及题目的性质,灵活的找到同构的条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值