题意转换过来之后大概就是建立两个数组a[n].b[n]的笛卡尔树,并求出这两棵笛卡尔树从key=1开始能够同构的最大子树。
代码如下:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#include<cmath>
using namespace std;
const int maxn=1e5+5;
int a[maxn],b[maxn],n;
int f1[maxn],l1[maxn],r1[maxn],root1;
int f2[maxn],l2[maxn],r2[maxn],root2;
int build(int *arr,int *f,int *l,int *r)
{
for(int i=1;i<=n;++i) f[i]=l[i]=r[i]=0;
stack<int> st;
int rt,last;
for(int i=1;i<=n;++i)
{
last=0;
while(!st.empty())
{
if(arr[st.top()]<arr[i])
{
rt=st.top();
if(r[rt])
{
f[r[rt]]=i;
l[i]=r[rt];
}
r[rt]=i;
f[i]=rt;
break;
}
last=st.top(); st.pop();
}
if(st.empty()&&last)
{
f[last]=i;
l[i]=last;
}
st.push(i);
}
while(!st.empty()) rt=st.top(), st.pop();
return rt;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
for(int i=1;i<=n;++i) scanf("%d",&b[i]);
root1=build(a,f1,l1,r1);
root2=build(b,f2,l2,r2);
int ans=1;
for(int i=2;i<=n;++i)
{
if(f1[i]==i-1&&f2[i]==i-1||l1[i]==l2[i]) ++ans;//根据笛卡尔树的性质,如果a[],b[]中i都是i-1的孩子,或者a[],b[]中i是i-1的父亲或祖先,但它们的左节点相同,那么子树同构
else break;
}
printf("%d\n",ans);
}
return 0;
}
TIPS:根据笛卡尔树及题目的性质,灵活的找到同构的条件