这道题个人认为有两个较难的点:
①看起来很像,非常像,感觉是数位DP,但其实不是。。。。
②原题虽然说不可含前导0,但其实有前导0也是没问题的,就比如说0012,12两个是一样的数。
如果明确这两点之后,再加上组合数的一点知识,这道题就可以确定解题思路了。
思路:
枚举。。。
怎么枚举?看代码吧。。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
ll ans,c[55][55]; //c[i][j]表示组合数,C i取j
int a[10]={0},digit[55],p; //a[i]表示数字i出现的次数
ll get_mul(int num)
{
ll ret=1,temp=0;
for(int i=0;i<=9;i++)
{
ret*=c[num-temp][a[i]];
temp+=a[i];
}
return ret;
}
void dfs(int pos,int num) //基本思路就是,从最高位k开始,假设最高位上限为up,枚举0~up,
//当最高为不为up时,假设为0,先把0填在这个位置,a[0]--,后面还有k-1个位置
//就可以先填0,再填1,2...9,总共有c[k-1][a[0]]*c[k-1-a[0]][a[1]]*...c[k-1-a[0]-...a[8]][a[9]的方案数(用上面get_mul函数求出来)
//当最高位为up时,a[up]--,跳至下一位k-1位枚举,假设此时最高位为up',重复上述操作,直到枚举完所有位数
{
if(pos==-1) return;
for(int i=0;i<=digit[pos];i++)
{
if(!a[i]) continue; //没有出现这种数字,继续下一次循环
if(i!=digit[pos])
{
a[i]--;
ans+=get_mul(num-1);
a[i]++; //求完之后记得补回来
}
else
{
a[i]--;
dfs(pos-1,num-1);
}
}
}
int main()
{
char s[55];
cin>>s;
int n=strlen(s);
for(int i=0;i<=51;i++) c[i][i]=c[i][0]=1;
for(int i=2;i<=51;i++)
for(int j=1;j<i;j++)
c[i][j]=c[i-1][j]+c[i-1][j-1];
p=0;
for(int i=n-1;i>=0;i--)
{
digit[p++]=s[i]-'0';
a[(s[i]-'0')%10]++;
}
ans=0;
dfs(p-1,p);
cout<<ans<<endl;
return 0;
}
最终还是把这道题归到了数位DP的专题了,因为它实在太像了。。。借此铭记,以后不被表面现象所迷惑。
另外,记得有些情况虽然不可带前导0,但带了也没事的。