背包问题——01背包问题与完全背包问题

一、01背包问题(名字由来:每件物品只能用一次)

2. 01背包问题 - AcWing题库icon-default.png?t=M276https://www.acwing.com/problem/content/description/2/

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;

int dp[N][N];  //dp[i][j]表示从前i件物品选出体积不超过j的物品的最大总价值
int v[N],w[N];

int main()
{
	int n,V;
	cin>>n>>V;
	for(int i =1;i<=n;i++)
		cin>>v[i]>>w[i];
	
	for(int i =1;i<=n;i++){
		
		for(int j =1;j<=V;j++){
			dp[i][j] = dp[i-1][j];
			
			if(j>=v[i])
				dp[i][j] = max(dp[i][j],dp[i-1][j-v[i]]+w[i]);		
		}
	}
	
	cout<<dp[n][V]<<endl;
	
	return 0;
 }

         一维优化:

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 1010;

int dp[N];
int v[N],w[N];

int main() {
	int n,V;
	cin>>n>>V;
	for(int i =1; i<=n; i++)
		cin>>v[i]>>w[i];

	for(int i =1; i<=n; i++) {

		for(int j =V; j>=1; j--) {
			dp[j] = dp[j];
			if(j>=v[i])
				dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
		}
	}

	cout<<dp[V]<<endl;

	return 0;
}

二、完全背包问题(每件物品使用不限制次数)

3. 完全背包问题 - AcWing题库icon-default.png?t=M276https://www.acwing.com/problem/content/3/

#include<iostream>
#include<algorithm>
using namespace std;

const int N =1010;

int dp[N][N];
int w[N],v[N];
int n,V;

int main()
{
	cin>>n>>V;
	
	for(int i =1;i<=n;i++)
		cin>>v[i]>>w[i];
	
	for(int i =1;i<=n;i++){
		
		for(int j =1;j<=V;j++){
			 
			for(int k=0;k*v[i]<=j;k++){ //k为当前物品用几次,k==0时相当于没选这件物品 
				
				dp[i][j] = max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	
	cout<<dp[n][V];
	
	return 0; 
 } 

         优化1

#include<iostream>
#include<algorithm>
using namespace std;

const int N =1010;

int dp[N][N];
int w[N],v[N];
int n,V;

int main()
{
	cin>>n>>V;
	
	for(int i =1;i<=n;i++)
		cin>>v[i]>>w[i];
	
	for(int i =1;i<=n;i++){
		
		for(int j =1;j<=V;j++){
			
			dp[i][j] = dp[i-1][j];
			if(j>=v[i])
				dp[i][j] = max(dp[i][j],dp[i][j-v[i]]+w[i]);  //通过递推公式可得
		
		}
	}
	
	cout<<dp[n][V];
	
	return 0; 
 } 

        优化2

#include<iostream>
#include<algorithm>
using namespace std;

const int N =1010;

int dp[N];
int w[N],v[N];
int n,V;

int main()
{
	cin>>n>>V;
	
	for(int i =1;i<=n;i++)
		cin>>v[i]>>w[i];
	
	for(int i =1;i<=n;i++){
		
		for(int j =v[i];j<=V;j++){
			
			dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
		}
	}
	
	cout<<dp[V]<<endl;
	
	return 0; 
 } 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值