粒子群(PSO)算法的理解与应用

最近在学习粒子群算法,看了很多资料都有点摸不清头脑,直到看了一篇博客中超级简洁的粒子群C++实现代码,才明白粒子群算法的原理,真心感谢博主,在此贴出博主的博客地址:

http://blog.sina.com.cn/s/blog_4ed027020100c9lx.html

在前面的文章中,我们提到的梯度下降法、牛顿法、高斯-牛顿法,以及LM算法等都属于最优化算法,这些最优化算法的共同点是优化一组可能的解,使该解尽可能接近真实解。粒子群算法(也称为PSO算法)也属于最优化算法,但该算法与上述提到算法的主要区别在于,该算法同时优化多组可能的解,最后在多组可能的解中选择最接近真实解的一组作为最终解。每一组可能的解就是一个粒子,因此多组可能解组成了粒子群,这就是该算法名称的由来。下面将讲解我对粒子群算法的理解,并将该算法应用于一个简单例子的最优化求解。

1. 粒子群算法的核心思路

粒子群算法被提出的灵感来源于鸟群觅食。如下图,鸟群觅食过程中,每只鸟沿着各个方向飞行去寻找食物,每只鸟儿都能记住到目前为止自己在飞行过程中最接近食物的位置,同时每只鸟儿之间也有信息共享,它们会比较到目前为止各自与食物之间的最近距离,从各自的最近距离中,选择并记忆整体的一个最近距离位置。由于每只鸟儿都是随机往各个方向飞行的,各自的最近距离位置与整体最近距离位置不断被更新,也即它们记忆中的最近位置越来越接近食物,当它们飞行到达的位置足够多之后,它们记忆的整体最近位置也就达到了食物的位置。

抽象成数学模型,每只鸟儿就是一个粒子,食物的位置也就是问题的最优解,鸟儿与食物的距离也即当前粒子的目标函数值。比如要求z=x*x+y*y的最优解,设置粒子数为6个,如下图所示,相当于各个粒子在曲面上滚动,每个粒子i(0≤i≤5)记住自己滚动过程中(迭代)的最低位置(位置越低z值越小)Zi(0≤i≤5),同时不同粒子之间也有交流,它们会比较Z0~Z5,从中取得一个最小值作为当前的全局最低位置。

2. 粒子群算法的实现

假设目标函数有n个输入参数:f(x1, x2, ..., xn)。

对于每个粒子,它包含的元素

(1) 当前时刻位置:(x1, x2, ..., xn)

(2) 当前时刻的目标函数值(也称为适应度):f(x1, x2, ..., xn)

(3) 该粒子的历史最优位置:(x1_pbest, x2_pbest, ..., xn_pbest)

(4) 该粒子的历史最优目标函数值:f_pbest = f(x1_pbest, x2_pbest, ..., xn_pbest)

对于全部粒子,它们共有的元素:

(1) 粒子总数:num

(2) 迭代总次数:cnt。粒子群算法也是一个迭代的过程,需要多次迭代才能获取到理想的最优解。

(3) 全局最优位置:(x1_gbest, x2_gbest, ..., xn_gbest)

(4) 全局最优目标函数值:f_gbest = f(x1_gbest, x2_gbest, ..., xn_gbest)

(5) 位置随机化的上下限:xmin,xmax。迭代开始的时候以及迭代的过程中,均需要对粒子的位置进行随机分布,需要设置随机分布的上下限,不然随机分布偏离得太远,会严重影响优化结果。

(6) 速度的上下限:Vmin,Vmax。迭代过程中,速度也具有一定的随机性,需要限制速度的大小在一定范围内,不然如果速度值太大也会严重影响优化结果。

(7) 速度计算参数:c1、c2。通常取1.0~1.8的值。

粒子位置的更新公式:

参考上述提到的博客,对于每一个粒子的每一个位置参数xi,其位置更新公式如下,其中randf为0~1的随机数,c1与c2通常取1.0~1.8之间的固定值。

为了加快收敛速度,根据速度具有惯性的原理,后来人们提出了在速度计算中增加惯性,也即加上上一轮迭代时该位置参数的速度。如下式,其中w为0~1的参数,通常随着迭代次数的增加,逐渐减小w,因为越到后面可能解就越接近真实解,迭代收敛就越慢,所以需要减小w来放慢速度,否则容易错过最优解。

C++代码实现(本代码参考了上述提到的博客的代码):

定义全局参数:

#define DATA_SIZE 500
const int NUM = 300;  //粒子总数
const float c1 = 1.65;  //速度计算参数1
const float c2 = 1.65;  //速度计算参数2
const float xmin = -150;   //位置下限
const float xmax = 150;    //位置上限


const float vmin = -250.5;   //速度下限
const float vmax = 250.5;    //速度上线

定义粒子结构体:

struct particle
{
  float x[DATA_SIZE];   //该粒子的当前时刻位置
  float bestx[DATA_SIZE];//该粒子的历史最优位置
  float f;       //该粒子的当前适应度
  float bestf;   //该粒子的历史最优适应度
}swarm[NUM];   //总共有num个粒子

获取0~1的随机数:

#define randf ((rand()%10000+rand()%10000*10000)/100000000.0) //产生0-1随机浮点数

目标函数,显然目标函数的真实解为(0, 1, 2,..., dim-1):

float f1(float x[], int dim)
{
  float z = 0;
  for (int i = 0; i < dim; i++)
  {
    z += (i+20)*(x[i] - i)*(x[i] - i);
  }
  return z;
}

迭代优化过程:

/*
best为全局最优位置
DIM为目标函数的输入参数总个数,也即每个粒子的位置参数总个数
*/
void PSO(float *best, int DIM)
{
  for (int i = 0; i < DIM; i++)//初始化全局最优
  {
    best[i] = randf*(xmax - xmin) + xmin; //随机生成xmin~xmax的随机数
  }
  //初始化全局最优目标函数值为一个非常大的值
  double gbestf = 100000000000000.0;  
  
  for (int i = 0; i < NUM; i++)  //初始化粒子群
  {
    particle* p1 = &swarm[i];   //获取每一个粒子结构体的地址
    for (int j = 0; j < DIM; j++)
    {
      //随机生成xmin~xmax的随机数作为该粒子的位置参数
      p1->x[j] = randf*(xmax - xmin) + xmin;
    }
    p1->f = f1(p1->x, DIM);   //计算当前时刻的目标函数值
    p1->bestf = 100000000000000.0;  //初始化每个粒子的历史最优目标函数值为一个非常大的值
  }


  float *V = (float *)calloc(DIM, sizeof(float));
  const int cnt = 2000;   //总共2000次迭代
  float w = 0.0025/(cnt-1);  //设置w初值,后面逐渐减小
 
  for (int t = 0; t < cnt; t++)   //cnt次迭代
  {
    for (int i = 0; i < NUM; i++)  //NUM个粒子
    {
      particle* p1 = &swarm[i];
      for (int j = 0; j < DIM; j++)   //计算速度,并更新位置
      {
        //w*(cnt-1-t)随着t的增加逐渐减小
        V[j] = w*(cnt-1-t)*V[j] + c1*randf*(p1->bestx[j] - p1->x[j]) + c2*randf*(best[j] - p1->x[j]);
        //V[j] = c1*randf*(p1->bestx[j] - p1->x[j]) + c2*randf*(best[j] - p1->x[j]);
        //限制速度的上下限
        V[j] = (V[j] < vmin) ? vmin : ((V[j] > vmax) ? vmax : V[j]);
        p1->x[j] = p1->x[j] + V[j];  //更新位置参数
      }


      p1->f = f1(p1->x, DIM);   //计算当前粒子的当前时刻目标函数值
      //如果当前粒子的当前时刻目标函数值小于其历史最优值,则替换该粒子的历史最优
      if (p1->f < p1->bestf)   
      {
        for (int j = 0; j < DIM; j++)
        {
          p1->bestx[j] = p1->x[j];
        }
        p1->bestf = p1->f;
      }


      //如果当前粒子的历史最优值小于全局最优值,则替换全局最优值
      if (p1->bestf < gbestf)   
      {
        for (int j = 0; j < DIM; j++)
        {
          best[j] = p1->bestx[j];
        }
        
        //这里有点不理解,为什么替换全局最优值之后要重新随机分布该粒子的位置参数?
        //如果没有这部分代码,整体优化效果就会很差
        for (int j = 0; j < DIM; j++) 
        {
          p1->x[j] = randf*(xmax - xmin) + xmin;
        }


        gbestf = p1->bestf;
        printf("t = %d, gbestf = %lf\n", t, gbestf);
      }
    }
  }
  
  free(V);
}

主函数:

void main(void)
{
  int DIM = 400;//维数
  float gbestx[DATA_SIZE];//全局最优位置


  PSO(gbestx, DIM);


  printf("全局最优位置:\n");
  for(int i = 0; i < DIM; i++)
  {
    printf("%f ", gbestx[i]);
    if (i > 0 && i % 7 == 0)
      printf("\n");
  }
  printf("\n");
}

运行上述代码,得到结果如下,可知获取的最优解还是非常接近真实解的。

计算速度时,分别加入惯性与不加入惯性,记录每轮迭代的全局最优目标函数值,如下图所示,可以看到加入惯性之后全局最优目标函数值减小得更快。

  • 69
    点赞
  • 370
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它模拟了粒子在搜索空间中的移动和信息交流过程。PSO算法通过不断迭代寻找最优解,可以应用于单目标优化问题。 然而,对于多目标优化问题,PSO算法也有一定的局限性。在多目标优化问题中,存在多个冲突的目标函数,通常无法找到一个单一的最优解。因此,为了解决这个问题,需要采用多目标优化算法。 《多目标优化pdf》是一本介绍多目标优化算法的论文或资料。它通过详细介绍多目标优化的原理、方法和应用案例,帮助人们更好地理解应用多目标优化算法。 多目标优化算法通过利用不同的策略和技巧,能够搜索并保留一组最优解,而不仅仅是单一的最优解。常见的多目标优化算法包括遗传算法、蚁群算法和模拟退火算法等。这些算法可以在搜索空间中找到多个非支配解(Pareto最优解),并根据个体的评价值来不断改进和演化。 多目标优化算法的研究领域包括工程、经济、交通等众多领域。它可以帮助决策者在多种冲突目标的条件下做最佳决策,提供多种可行方案供决策者选择。 总之,粒子群优化算法是一种针对单目标优化问题的优化算法,而多目标优化pdf是一本介绍多目标优化算法的资料。通过多目标优化算法,我们可以在多个冲突的目标条件下寻找到一组最优解,为实际问题的决策提供有价值的参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌萌哒程序猴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值