人工智能
人工智能
shang_bo_liang
这个作者很懒,什么都没留下…
展开
-
yolov1到yolov5
YOLO系列算法精讲:从yolov1至yolov5的进阶之路(2万字超全整理)_AI 菌的博客-CSDN博客_yolov1到yolov5原创 2022-04-07 21:21:24 · 255 阅读 · 0 评论 -
ubuntu配置服务器可视化vnc教程
ubuntu配置vnc服务 - eryoung2 - 博客园Ubuntu 20.04 下安装VNC Server_梦上多多的博客-CSDN博客_ubuntu vncservercsdn上的教程在配置TightVNC服务有问题,以博客园的为主。原创 2022-03-23 20:01:54 · 294 阅读 · 0 评论 -
深度学习调参,各个参数理解和说明以及调整的要领。underfitting和overfitting的理解,过拟合的解释。
深度学习 14. 深度学习调参,CNN参数调参,各个参数理解和说明以及调整的要领。underfitting和overfitting的理解,过拟合的解释。_不积跬步无以至千里-CSDN博客_cnn参数设置原创 2022-03-15 08:15:54 · 1223 阅读 · 0 评论 -
parser.add_argument的参数设置required=true报错
argparser中的参数解释以及required参数在pycharm中的运行方式_mercies的博客-CSDN博客原创 2022-03-14 19:12:58 · 4237 阅读 · 0 评论 -
pytorch保存与加载模型来测试或继续训练
pytorch加载保存查看checkpoint文件_joyce_peng的博客-CSDN博客_加载checkpoint原创 2022-03-12 09:21:03 · 1610 阅读 · 0 评论 -
pytorch读取数据集
pytorch读取数据集_日常搬砖xbw的博客-CSDN博客_pytorch加载本地的数据集原创 2022-03-10 21:54:13 · 220 阅读 · 0 评论 -
pytorch实现自由的数据读取-torch.utils.data的学习
pytorch实现自由的数据读取-torch.utils.data的学习_tsq292978891的博客-CSDN博客_torch.utils.data原创 2022-03-10 14:37:19 · 1163 阅读 · 0 评论 -
LeetCode题库的python代码
https://github.com/csujedihy/lc-all-solutions原创 2022-03-10 14:13:04 · 940 阅读 · 0 评论 -
torchvision 包详解
torchvision 包的介绍_造未来-CSDN博客_torchvision原创 2022-03-09 18:36:39 · 331 阅读 · 0 评论 -
CVPR 2022 | 清华&字节提出FGD:针对目标检测的重点与全局知识蒸馏
CVPR2022关于目标检测的知识蒸馏工作: Focal and Global Knowledge Distillation for Detectors,只需要30行代码就可以在anchor-base, anchor-free的单阶段、两阶段各种检测器上稳定涨点文章链接:arxiv.org/abs/2111.11837代码链接:github.com/yzd-v/FGD...原创 2022-03-09 13:23:45 · 4085 阅读 · 0 评论 -
目标检测比赛中的tricks(已更新更多代码解析)
目标检测比赛中的tricks(已更新更多代码解析) - 知乎原创 2022-03-08 13:32:43 · 131 阅读 · 0 评论 -
pytorch实现resnet50
PyTorch实现的ResNet50、ResNet101和ResNet152_mingo_敏-CSDN博客_resnet50和resnet101区别原创 2022-03-07 14:04:45 · 825 阅读 · 0 评论 -
如何理解 Transformer 中的 Query、Key 与 Value
如何理解 Transformer 中的 Query、Key 与 Value_Yafee的专栏-CSDN博客_key query value原创 2022-02-23 14:32:13 · 750 阅读 · 0 评论 -
目标检测之小目标检测和遮挡问题
目标检测之小目标检测和遮挡问题_AndyJ的学习之旅-CSDN博客_遮挡目标检测原创 2022-02-22 20:39:55 · 841 阅读 · 0 评论 -
目标检测 | 盘点提升小目标检测的思路
目标检测 | 盘点提升小目标检测的思路_AI算法修炼营的博客-CSDN博客原创 2022-02-21 16:33:50 · 695 阅读 · 0 评论 -
目标检测-小目标检测涨点方法
目标检测-小目标检测涨点方法_劲草浅躬行-CSDN博客_目标检测涨点原创 2022-02-21 16:25:53 · 1424 阅读 · 0 评论 -
Small Object Detection using Context and Attention
【文献阅读5】Small Object Detection using Context and Attention_我是大阿周的学习博客-CSDN博客原创 2022-02-21 14:46:41 · 585 阅读 · 0 评论 -
Augmentation for small object detection-小目标检测数据扩增
【文献阅读8】Augmentation for small object detection-小目标检测数据扩增_我是大阿周的学习博客-CSDN博客原创 2022-02-21 14:46:03 · 1121 阅读 · 0 评论 -
第一届微小目标检测TOD挑战赛的冠军方案解读
【文献阅读6】第一届微小目标检测TOD挑战赛的冠军方案解读:方法和结果!_我是大阿周的学习博客-CSDN博客原创 2022-02-21 14:45:25 · 609 阅读 · 0 评论 -
SSD算法原理介绍,包含算法结构、Loss计算、默认框计算几个方面
SSD算法原理介绍,包含算法结构、Loss计算、默认框计算几个方面_浅蓝的风的博客-CSDN博客_ssd算法原创 2022-01-22 10:33:07 · 389 阅读 · 0 评论 -
关于SSD默认框产生的详细解读
关于SSD默认框产生的详细解读_anqian123321的博客-CSDN博客原创 2022-01-22 10:32:21 · 308 阅读 · 0 评论 -
YOLOV3和faster rcnn代码(pytroch版本)学习
bubbliiiing (Bubbliiiing) · GitHub原创 2022-01-17 17:48:49 · 488 阅读 · 0 评论 -
PASCAL VOC数据集分析
PASCAL VOC数据集分析_girafffeee的博客-CSDN博客_pascal voc原创 2022-01-17 17:46:55 · 135 阅读 · 0 评论 -
faster rcnn里的rpn详解
RPN 解析_lanran2的博客-CSDN博客_rpn原创 2022-01-17 11:23:27 · 1064 阅读 · 0 评论 -
pytorch教程之nn.Module类详解——使用Module类来自定义模型
pytorch教程之nn.Module类详解——使用Module类来自定义模型_MIss-Y的博客-CSDN博客_nn是什么意思原创 2022-01-16 18:12:14 · 587 阅读 · 0 评论 -
YOLO V1,V2,V3详解
【论文解读】Yolo三部曲解读——Yolov1 - 知乎 (zhihu.com)原创 2021-11-10 07:32:10 · 528 阅读 · 0 评论 -
YOLO V1
【论文解读】Yolo三部曲解读——Yolov1 - 知乎 (zhihu.com)原创 2021-11-08 16:09:45 · 63 阅读 · 0 评论 -
关于cnn的理解
CNN(自我理解) - 你们干嘛呢 - 博客园 (cnblogs.com)原创 2021-11-08 07:46:17 · 110 阅读 · 0 评论 -
cuda 和 pytorch版本不一致torch.cuda.is_available()返回false——解决办法
我的电脑下的cuda版本是11.4,pytorch官网只有11.3,cuda一直用不了。亲测有用torch.cuda.is_available()返回false——解决办法_Nefu_lyh的博客-CSDN博客原创 2021-11-02 09:50:28 · 2621 阅读 · 3 评论 -
pytorch神经网络搭建
深度学习框架PyTorch一书的学习-第一/二章 - 慢行厚积 - 博客园原创 2021-11-01 16:51:32 · 310 阅读 · 0 评论 -
深度学习环境搭建anaconda+pytorch+torchvision
深度学习环境搭建(GPU)CUDA安装(完全版)_CSDN博客-CSDN博客_cuda安装原创 2021-10-27 10:43:41 · 357 阅读 · 0 评论 -
【神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
当训练集确定之后,输入层结点数和输出层结点数随之而确定,首先遇到的一个十分重要而又困难的问题是如何优化隐层结点数和隐层数。实验表明,如果隐层结点数过少,网络不能具有必要的学习能力和信息处理能力。反之,若过多,不仅会大大增加网络结构的复杂性(这一点对硬件实现的网络尤其重要),网络在学习过程中更易陷入局部极小点,而且会使网络的学习速度变得很慢。隐层结点数的选择问题一直受到神经网络研究工作者的高度重视。方法1: fangfaGorman指出隐层结点数s与模式数N的关系是:s=log2N; 方法二: K..原创 2021-09-04 22:22:12 · 5855 阅读 · 0 评论