用java语言实现的巡回置换算法

用java语言实现的巡回置换算法:i=1,2,3,4,5,6,7;

p[i]=4,7,3,1,2,5,6;

 

以下程序步骤:

public class Xunhuizhihuan {

 
 public static void main(String[] args) {
 
  int x;
  int k;
  int[] p={4,7,3,1,2,5,6};
  for(k=1;k<=7;k++)
  {
    x=k;
    System.out.println( "当k="+k+"时");
    {
   do{
    System.out.println("p["+x+"]="+p[x-1]);
     x=p[x-1];
   }while(p[x-1]!=p[k-1]);  
    
    }
   
  }
     

 }

}


巡回置换问题是指在一个完全图中,每个顶点之间都有一条边,求一条经过每个顶点一次且仅一次的回路,使得回路的总长度最小。这个问题是一个NP难问题,因此通常使用启发式算法来解决。其中一种启发式算法是遗传算法。 遗传算法是一种模拟自然进化过程的优化算法。在巡回置换问题中,可以将每个可能的回路看作一个个体,通过交叉、变异等操作来产生新的个体,并通过适应度函数来评估每个个体的优劣程度。经过多代进化,最终得到一个较优的回路。 以下是巡回置换问题的遗传算法的Python实现: ```python import random # 生成初始种群 def generate_population(city_num, pop_size): population = [] for i in range(pop_size): chromosome = list(range(city_num)) random.shuffle(chromosome) population.append(chromosome) return population # 计算路径长度 def get_distance(city1, city2): return ((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2) ** 0.5 def get_path_length(path, cities): length = 0 for i in range(len(path) - 1): length += get_distance(cities[path[i]], cities[path[i+1]]) length += get_distance(cities[path[-1]], cities[path[0]]) return length # 选择操作 def selection(population, cities): fitness_list = [1 / get_path_length(chromosome, cities) for chromosome in population] total_fitness = sum(fitness_list) probability_list = [fitness / total_fitness for fitness in fitness_list] selected_population = [] for i in range(len(population)): selected_population.append(random.choices(population, probability_list)[0]) return selected_population # 交叉操作 def crossover(parent1, parent2): child = [-1] * len(parent1) start = random.randint(0, len(parent1) - 1) end = random.randint(0, len(parent1) - 1) if start > end: start, end = end, start for i in range(start, end+1): child[i] = parent1[i] j = 0 for i in range(len(parent2)): if child[j] == -1: if parent2[i] not in child: child[j] = parent2[i] j += 1 else: j += 1 return child # 变异操作 def mutation(chromosome): index1 = random.randint(0, len(chromosome) - 1) index2 = random.randint(0, len(chromosome) - 1) chromosome[index1], chromosome[index2] = chromosome[index2], chromosome[index1] return chromosome # 遗传算法主函数 def genetic_algorithm(city_list, pop_size, generation_num, crossover_rate, mutation_rate): population = generate_population(len(city_list), pop_size) for i in range(generation_num): population = selection(population, city_list) new_population = [] for j in range(pop_size): parent1 = random.choice(population) if random.random() < crossover_rate: parent2 = random.choice(population) child = crossover(parent1, parent2) else: child = parent1 if random.random() < mutation_rate: child = mutation(child) new_population.append(child) population = new_population best_path = min(population, key=lambda x: get_path_length(x, city_list)) best_length = get_path_length(best_path, city_list) return best_path, best_length # 测试 if __name__ == '__main__': city_list = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)] best_path, best_length = genetic_algorithm(city_list, 100, 1000, 0.8, 0.1) print('最优路径:', best_path) print('最短路径长度:', best_length) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值