- 博客(433)
- 收藏
- 关注
原创 端到端多目标跟踪的Transformer解决方案MOTR
E2EMotDETRV3是第三代基于Transformer的端到端多目标跟踪模型,将检测与跟踪整合为单一网络,直接输出目标轨迹。相比传统方法,其主要优势在于端到端一体化处理、时序建模能力和全局关联优化。模型核心包括时空特征编码器、轨迹查询生成器、跨帧关联解码器和多任务损失函数。V3版本通过滑动窗口时序注意力、动态查询管理和抗遮挡增强等技术,显著提升了效率和精度。实验显示,在MOT17/20数据集上MOTA达89.5%,ID切换减少40%,推理速度32FPS。适用于智能监控、自动驾驶等场景,支持模型压缩和实时
2025-06-29 22:45:00
84
原创 视频序列中的帧间匹配技术 FrameMatcher 详解
帧匹配器(FrameMatcher)是视频处理的关键组件,用于建立连续帧间的像素、特征或目标对应关系,广泛应用于目标跟踪、运动估计、视频稳定等领域。主要技术包括:1)基于特征点(SIFT/ORB等)的匹配,鲁棒但计算复杂;2)基于区域的块匹配(SSD/NCC),简单高效但对大运动有限;3)基于深度学习(FlowNet/PWC-Net),精度高但需大量数据。示例代码展示了基于ORB特征点的OpenCV实现,含特征检测、匹配筛选和运动估计功能。深度学习方法(如PWC-Net)能提供更高精度的光流估计。
2025-06-28 23:30:00
73
原创 HungarianMatcher 匈牙利匹配算法原理和目标检测应用
预测集合Pp1p2pnPp1p2pnnnn为预测框数量)真实标注集合Gg1g2gmGg1g2gmmmm为真实框数量)构建一个n×mn \times mn×m的成本矩阵CCC,其中CijC_{i,j}Cij表示预测pip_ipi与真实gjg_jgj的匹配成本。目标是找到一个双射(一对一映射)σ1m→1nσ1m→1nσ∗argmin。
2025-06-28 22:45:00
91
原创 编译安装detectron2
detectron2编译安装失败问题分析 核心问题在于环境隔离导致的PyTorch依赖缺失。当从源码安装时,pip的临时构建环境无法访问当前conda环境(MOTR-motr_bdd100k)中已安装的PyTorch。 解决方案 强制使用当前环境Python路径安装: D:\Aenvs\MOTR-motr_bdd100k\Scripts\python -m pip install -e . 禁用构建隔离: pip install --no-build-isolation -e . 先手动安装构建依赖: pi
2025-06-28 22:14:26
59
原创 Deformable Transformer 详解
可变形Transformer是标准Transformer的改进版本,专门用于处理计算机视觉中的几何变形问题。它通过可变形注意力机制,只关注参考点周围的关键区域,而非全局计算,显著降低了计算复杂度。该机制包含参考点定义、偏移量学习、特征采样和注意力权重分配四个核心环节,能够自适应地建模目标变形。在目标检测、实例分割等视觉任务中表现优异,微软亚洲研究院提出的Deformable DETR等模型实现了SOTA性能。文中还提供了一个PyTorch实现的简化示例,展示了偏移量预测和特征采样的核心流程。
2025-06-27 22:45:00
61
原创 FrozenBatchNorm2d 详解
FrozenBatchNorm2d 是 BatchNorm2d 的一种特殊变体,主要用于在模型训练或推理过程中。
2025-06-27 17:24:21
104
原创 CUDA Core 和 Tensor Core 的区别
NVIDIA GPU中的CUDA Core和Tensor Core是两种关键计算单元,具有不同的设计目标和适用场景。CUDA Core是通用计算单元,支持FP32/FP64高精度运算和复杂控制流,适用于科学计算和图形处理。而Tensor Core是专用矩阵运算单元,支持FP16/INT8混合精度,在深度学习训练和推理中提供8-16倍的性能提升。二者的主要差异体现在计算类型、精度支持、内存访问和编程模型上:Tensor Core通过自动批处理实现高效矩阵运算,而CUDA Core更适合通用并行计算。现代GPU
2025-06-17 06:00:00
726
原创 CUDA Tensor Core 基础操作
摘要:NVIDIA TensorCore是GPU中专门加速矩阵运算的硬件单元,可显著提升深度学习训练和推理性能。本文详细介绍了TensorCore的核心特性、编程方法和优化技巧,包括:(1)支持Volta、Turing和Ampere等架构;(2)提供FP16、TF32等多种精度支持;(3)通过cuBLAS或WMMA API进行编程;(4)矩阵维度对齐、内存访问优化等关键技巧。文章还对比了不同精度模式的应用场景,并给出性能评估工具和优化建议,为开发者充分利用TensorCore提供实用指导。
2025-06-16 05:15:00
824
原创 python zip() 函数的用法
在 Python 里,zip()函数能够把多个可迭代对象(像列表、元组、字符串等)中对应的元素组合成元组,最终返回一个由这些元组构成的迭代器。
2025-06-15 15:43:43
307
原创 CUDA线程索引与操作
本文深入解析了CUDA线程索引机制及其应用。主要内容包括:1. CUDA三级线程层次结构(网格、线程块、线程)的内置变量与关系;2. 一维、二维、三维配置下的索引计算方法与示例代码;3. 高级应用场景(并行前缀和、矩阵转置)的实现;4. 优化技巧(线程块大小选择、合并内存访问等)。通过合理设计线程层次结构和索引计算,可以充分发挥GPU并行计算能力。文章包含多维度图示和完整代码示例,为CUDA并行编程提供实用指导。
2025-06-15 05:15:00
662
原创 PyTorch TensorBoard 使用详解
本文详细介绍了如何在PyTorch中使用TensorBoard进行模型可视化。首先需要安装TensorBoard并创建SummaryWriter对象记录数据。通过MNIST分类任务演示了如何记录训练损失、准确率、模型图、参数分布等指标,并提供了代码示例展示各种可视化功能的使用方法,包括标量追踪、图像网格、PR曲线和嵌入可视化等。文章还介绍了启动TensorBoard服务器的方法,以及高级用法如多实验对比、自定义图表和超参数记录。TensorBoard可以帮助开发者更好地理解、调试和优化深度学习模型,是PyT
2025-06-14 05:45:00
100
原创 CUDA基础概念和线程层次结构
CUDA是NVIDIA开发的并行计算平台,采用主机-设备模型实现异构计算:CPU作为主机负责程序控制和内存管理,GPU作为设备执行并行计算任务。其核心特性包括:1)使用__global__修饰符定义核函数,通过<<<grid,block>>>语法调用;2)三维线程层次结构(线程、线程块、网格)实现大规模并行;3)提供threadIdx等内置变量进行线程索引。该模型充分发挥GPU的并行计算优势,广泛应用于科学计算、深度学习等领域。合理设计线程结构和内存访问模式是优化CUDA
2025-06-14 05:15:00
525
原创 CUDA开发环境搭建
本文详细介绍了在不同操作系统上搭建CUDA开发环境的完整流程。主要内容包括:1) 前期准备(GPU兼容性检查、系统要求);2) NVIDIA驱动安装方法(Windows/Linux);3) CUDA Toolkit安装与环境变量配置;4) cuDNN深度学习加速库的安装;5) 相关工具库(NCCL、TensorRT)的安装指南;6) 环境测试方法(CUDA示例程序、PyTorch/TensorFlow测试);7) 常见问题解决方案。文章以步骤化方式呈现,涵盖Windows和Linux系统下的具体操作命令,并
2025-06-13 14:33:50
589
原创 PyTorch优化器总结
PyTorch优化器深度解析:从基础到实践 本文系统介绍了PyTorch优化器的核心概念、常用算法和进阶用法。主要内容包括: 基础优化器详解:涵盖SGD、Adagrad、RMSprop和Adam等算法原理与参数配置 关键优化技术:学习率调度策略(阶梯衰减、余弦退火)、梯度处理(裁剪、累积)和混合精度训练 任务导向选择指南:针对图像分类、NLP和生成模型等不同场景提供优化器选型建议 高级扩展:自定义优化器实现方法和参数调优最佳实践 文章提供了丰富的代码示例,帮助开发者掌握优化器的核心机制和实际应用技巧。
2025-06-13 14:12:02
563
原创 Nacos服务注册与发现原理
Nacos的服务注册与发现机制解析:阿里巴巴开源的Nacos组件通过NamingService接口实现服务注册与发现功能。服务注册流程包含实例注册、持久化存储和心跳维持;服务发现采用订阅-推送模式,配合本地缓存实现高效调用。核心源码展示了ClientWorker处理注册/发现逻辑,ServiceInfoHolder管理服务信息缓存,NamingProxy负责与服务器通信。该机制支持客户端心跳和服务端主动检查两种健康监测方式,通过长轮询+推送实现配置实时同步,为微服务架构提供可靠的注册发现解决方案。
2025-06-12 18:26:23
599
原创 Eureka 心跳续约机制
摘要: Eureka的心跳续约机制是微服务架构中保障服务可用性的核心机制,通过客户端定时(默认30秒)向服务端发送续约请求,维护服务实例的存活状态。服务端基于续约情况触发自我保护模式(15分钟内续约成功率低于85%时)或剔除故障服务(默认90秒未续约)。关键参数包括续约间隔(leaseRenewalIntervalInSeconds)和服务过期时间(leaseExpirationDurationInSeconds),需根据场景调优。对比Consul、Nacos,Eureka依赖HTTP协议且具备自我保护特性
2025-06-12 17:13:10
1035
原创 Redis的常用配置详解
Redis配置优化指南:关键参数详解与生产实践 Redis性能优化需合理配置redis.conf文件,主要涉及以下方面:1.基础设置:端口、绑定IP、日志级别等基础参数;2.内存管理:限制内存大小并设置淘汰策略;3.持久化配置:RDB快照与AOF日志的触发条件及策略;4.网络与安全:连接数限制、认证密码等安全措施;5.集群高可用:哨兵与集群模式的启用方法。生产环境建议:内存设置为物理内存60%-70%,使用allkeys-lru策略,同时开启RDB和AOF持久化,配置强密码或ACL访问控制,并监控关键指标。
2025-06-12 17:10:07
1121
原创 Eureka 服务注册与发现原理和使用
多个 Eureka Server 互相注册,形成集群(如 Server A 注册到 Server B,Server B 注册到 Server A)。:分为服务提供者(Producer)和服务消费者(Consumer),负责与 Server 交互。服务启动时,Client 向 Server 发送注册请求,携带服务元数据(如服务名、IP、端口)。Client 定期(默认 30 秒)向 Server 发送心跳请求(续约),表明服务存活。Server 接收请求后,将服务信息存入注册表,并返回注册成功响应。
2025-06-12 14:00:06
913
原创 Kafka 同一分区(Partition)在同一时刻,多个消费者是否可以设置不同的 Offset
表示消费者在分区中的消费位置,每个消费者组独立维护自己的 Offset(存储在 __consumer_offsets 主题中)。:Kafka 中数据按主题(Topic)分类,每个主题包含多个分区(Partition),分区是数据存储和消费的最小单元。,多个独立消费者消费同一分区时会导致重复拉取数据(每个消费者都会从自己的 Offset 开始消费),可能引发性能问题。2. 组内消费者共享该分区的 Offset(由消费者组统一管理),Offset 的更新会影响整个组的消费进度。
2025-06-11 05:30:00
875
原创 向量、矩阵和张量的区别
通过维度和应用场景的理解,可以清晰区分三者的差异,并在实际问题中选择合适的工具(如用矩阵描述线性变换,用张量处理多维数据)。向量、矩阵和张量是线性代数及深度学习中重要的概念,它们的核心区别在于。
2025-06-11 05:30:00
220
原创 Kafka Topic中的数据在消费后还存在吗
进入 Kafka 数据目录(默认 /var/lib/kafka/data),查看分区对应的日志文件(以 .log 结尾),文件内容即为未过期的消息。消费者可以通过调整偏移量重新消费历史数据(如故障恢复后重新处理消息),这是 Kafka 流处理(如 Kafka Streams)的基础。自定义消费者逻辑,消费后通过 Kafka 的管理接口(如 AdminClient)删除指定分区的消息(复杂度高,不建议使用)。消费者B(属于另一个消费组)可以再次从分区中读取偏移量100的消息(只要数据未过期)。
2025-06-10 10:11:41
267
原创 EOFError-Ran out of input
摘要:YOLOv8训练中的EOFError和AttributeError通常由多进程数据加载与不可序列化对象冲突导致。解决方案包括:1)将lambda函数替换为全局定义函数;2)避免局部定义关键函数;3)临时禁用多进程数据加载(num_workers=0);4)使用if name == 'main'保护入口点。关键原则是确保所有传递给DataLoader的函数和对象都全局可见且可序列化。调试时建议先测试单线程数据加载,再逐步排查不可序列化对象。该问题常见于使用lambda或局部函数作为collate_fn等
2025-06-10 09:29:42
104
原创 乐观锁与悲观锁的实现和应用
乐观锁秉持 先试后验 的理念,它假定在大多数情况下,数据处理过程中不会发生冲突,所以不会在操作数据前加锁。在数据库表中添加一个version字段,每次数据更新时,该字段值递增。更新数据前,先比较当前事务读取的version值与数据库中的version值,若一致则执行更新,并将version值加 1;因此,在进行数据操作之前,就会获取锁,以确保在当前事务处理期间,其他事务无法对同一数据进行修改,从而保证数据的一致性和完整性。在实际开发中,应根据具体业务需求,合理选择合适的锁机制,以实现高效、可靠的并发处理。
2025-06-07 19:41:54
364
原创 CompletableFuture 有返回值的用法
Java 8的CompletableFuture类提供了强大的异步编程能力,支持有返回值的异步任务处理。摘要涵盖其核心用法:1)使用supplyAsync()启动异步任务;2)自定义线程池执行任务;3)通过thenApply/thenAccept处理结果;4)exceptionally/handle异常处理;5)串行(thenCompose)和并行(thenCombine)任务组合;6)批量执行(allOf/anyOf)。这些特性使异步代码更简洁易读,避免了回调地狱问题。CompletableFuture为
2025-06-04 10:13:39
396
原创 batch_size 参数最优设置
摘要:batch_size选择需要平衡硬件资源、数据规模与训练目标。小batch_size(1-32)内存占用低、泛化能力强但训练慢,大batch_size(256+)计算效率高但可能过拟合。关键考虑因素包括:显存限制(公式估算最大可行值)、数据量(小数据用小批量)、模型复杂度。实用策略包括梯度累积、混合精度训练、学习率联动调整(线性缩放规则),并推荐不同场景的配置方案。建议分三步优化:测试硬件上限→平衡速度与泛化→动态调整batch_size和学习率。最终需在计算效率与模型性能间取得最佳平衡。(150字)
2025-06-02 13:17:25
124
原创 imgsz参数设置
YOLOv8中imgsz参数选择指南:针对1280×720图像,推荐640×640尺寸平衡精度与速度(50.2mAP@0.5,40FPS)。显存充足可选1280提升小目标检测(52.3mAP),边缘设备可用320加速(80FPS)。GTX1660建议配置640×640+8batch,保持原始长宽比填充处理。实际应用建议先测试640基准,根据目标大小和硬件条件调整,可选多尺度训练增强泛化能力。不同尺寸对计算量、显存和性能影响显著,需根据具体需求权衡选择。
2025-06-02 11:07:23
203
原创 box_loss、cls_loss 和 dfl_loss 三个核心损失函数
YOLOv8目标检测模型训练中的三大关键损失函数解析:1.box_loss用于优化边界框定位精度,采用CIoU算法综合考虑重叠面积、中心点距离和长宽比;2.cls_loss评估分类准确性,使用交叉熵损失函数;3.dfl_loss通过概率分布提升边界框回归精度,特别适合小目标检测。三者加权构成总损失(total_loss=box_loss+cls_loss+dfl_loss),训练时需监测其变化趋势:box_loss过高可能标注有问题,cls_loss不降可能存在类别不平衡,dfl_loss波动则需调整学习率
2025-06-02 11:05:20
402
原创 CUDA内存溢出问题解决方案
文章摘要:针对GTX1660SUPER(6GB显存)训练YOLOv8时出现的内存不足问题,提出了8种优化方案:减小batch_size、选用更小模型、降低图像分辨率、精简数据增强、梯度累积、显存清理、CPU-GPU混合计算及组合优化。重点建议使用YOLOv8n/s模型,batch_size≤8,图像尺寸≤512,禁用复杂增强,配合梯度累积。这些方法虽会降低训练速度,但能保证6GB显存下的稳定训练,终极方案建议升级硬件或使用云GPU。文末还提供了显存监控方法。
2025-06-02 11:03:39
90
原创 道路目标检测和分类数据集
常用道路目标分类数据集包括Caltech Pedestrian、PASCAL VOC、Cityscapes、KITTI、Waymo Open和BDD100K等,涵盖行人、车辆、交通标志等多种道路目标。这些数据集在规模、标注类型和应用场景上各有特点,广泛应用于自动驾驶、智能交通等领域。使用前需注意数据获取途径、预处理步骤及许可证限制,并根据任务需求选择合适的数据集。
2025-06-02 11:02:14
202
原创 自动混合精度(AMP)训练在低版本显卡上的使用问题
摘要:在NVIDIA GeForce GTX 1660 SUPER(无TensorCore)显卡上运行AMP自动混合精度训练可能导致NaN损失或mAP归零,建议禁用AMP。解决方案包括:1)强制关闭AMP训练;2)改用FP32精度;3)调整学习率和优化器;4)启用梯度裁剪。对比测试显示,关闭AMP后损失曲线更稳定。该问题源于Turing架构显卡FP16计算精度不足,建议此类显卡用户直接使用FP32训练,或升级至带TensorCore的RTX系列显卡以获得更好的AMP支持。典型代码修改为在YOLOv8训练命令
2025-06-02 11:00:56
52
原创 Redis 缓存穿透、缓存击穿、缓存雪崩详解与解决方案
Redis缓存三大问题解决方案解析 Redis作为高性能缓存组件,在实际应用中常面临三大问题:1)缓存穿透(请求访问不存在的缓存数据),可通过布隆过滤器或缓存空对象解决;2)缓存击穿(热点数据过期瞬间的高并发访问),建议使用互斥锁或逻辑过期策略;3)缓存雪崩(大量数据同时失效或Redis宕机),可通过均匀设置过期时间、多级缓存和服务熔断机制应对。本文详细分析了每种问题的成因,并提供了Java实现方案,帮助开发者构建更稳定的分布式系统。
2025-06-01 08:47:01
953
原创 Redis分布式锁实现指南
本文介绍了基于Redis实现分布式锁的原理及Java实现方案。核心内容包括:Redis分布式锁的基本原理与需求(互斥性、安全性、容错性等),基于Jedis的简单实现方法,以及锁续期、Redisson框架等进阶解决方案。文章还列举了库存扣减、定时任务排重等典型应用场景,并提出了设置合理过期时间、使用唯一标识、保证解锁原子性等最佳实践。通过Redis分布式锁可以有效解决分布式系统中的资源竞争问题,提高系统可靠性和稳定性。
2025-06-01 08:23:39
419
原创 Redis 中的 5 种数据类型和示例场景
Redis作为高性能键值数据库,提供了5种核心数据类型及适用场景:1.String(字符串)用于缓存和计数器;2.List(列表)适合消息队列和时间序列;3.Set(集合)用于标签管理和UV统计;4.Hash(哈希)存储结构化对象数据;5.SortedSet(有序集合)实现排行榜和优先级队列。每种类型都配有具体操作命令和业务场景示例,开发者可根据需求灵活选用,充分发挥Redis的高效特性。
2025-06-01 08:16:36
504
原创 Kafka 如何保证顺序消费
摘要:本文探讨了Kafka如何保证消息顺序消费的核心机制。Kafka通过分区特性实现消息有序性,同一分区内的消息天然有序。生产者端可通过自定义分区器或固定分区策略将关联消息发送至同一分区,消费者端则需确保每个分区仅由一个消费者线程处理。典型应用场景包括金融交易、数据库变更日志及电商库存管理等需严格顺序处理的业务。文章详细分析了实现顺序消费的技术方案,并强调了在保证顺序性的同时需兼顾系统性能的平衡。
2025-05-31 12:00:46
1068
原创 Kafka ACK机制与数据可靠性
本文深入解析Kafka的ACK机制,介绍了三种确认模式(0/1/all)及其适用场景。acks=0实现最高吞吐量但可靠性最低,acks=1提供中间平衡,acks=all确保最高数据可靠性但性能较低。重点阐述了ACK机制与ISR副本的协同工作原理,包括min.insync.replicas配置和动态ISR调整策略。通过生产者配置示例和性能指标对比,展示了如何在可靠性与吞吐量之间取得平衡,并针对消息丢失、吞吐量下降等问题提供了解决方案建议。文章为开发者配置Kafka消息确认策略提供了实用指导。
2025-05-31 11:52:33
1423
原创 Kafka 的 ISR 机制与数据可靠性
摘要: Kafka的ISR(同步副本)机制是其实现高可用性和数据可靠性的核心技术。ISR动态维护与领导者副本同步的追随者副本列表,确保消息安全存储并参与故障容错。领导者副本处理读写请求,追随者副本同步数据;当acks=all时,需所有ISR副本确认消息才视为提交,保障数据一致性。若领导者故障,仅ISR内的副本可被选举为新领导者,避免数据丢失。该机制通过平衡可靠性与性能(如acks参数配置),适用于金融等高可靠场景或日志等高性能场景,是Kafka分布式消息系统的核心设计。
2025-05-31 11:36:56
1222
原创 Kafka 如何保证不重复消费
Kafka避免消息重复消费的关键策略:生产者端开启幂等性(单分区)或事务机制(跨分区)防止重复发送;消费者端采用手动提交偏移量确保消息处理完成后再提交;业务层可添加唯一标识或数据库去重逻辑作为最后保障。这三种机制协同配合,从不同层面确保消息处理的精准性,适用于不同业务场景需求,是构建可靠消息系统的核心方案。
2025-05-31 11:24:11
1367
原创 Kafka数据怎么保障不丢失
Kafka数据可靠性保障策略摘要:Apache Kafka通过多层次机制确保分布式消息系统中数据不丢失。生产者端采用acks参数(0/1/all)、重试机制和幂等性/事务控制消息发送可靠性;Broker端通过副本机制、ISR列表和日志持久化策略实现数据容错;消费者端利用偏移量管理和再均衡处理确保消息准确消费。此外,跨数据中心复制和监控告警提供高级保障。实际应用中需根据业务场景(如金融级强一致或高吞吐弱一致)在可靠性与性能间取得平衡。通过参数调优和多环节配合,Kafka构建了完整的数据可靠性保障链路。
2025-05-31 11:08:30
1276
原创 MySQL索引失效场景详解
本文总结了11种常见的MySQL索引失效场景及优化方案,包括类型不匹配、组合索引最左前缀缺失、使用函数、隐式转换、范围条件、LIKE通配符、OR条件、NULL查询、字段计算和统计信息不准等问题。关键优化建议包括:确保类型匹配、遵循最左前缀原则、避免函数操作、改写查询条件、拆分OR语句为UNION、定期更新统计信息等。通过EXPLAIN分析执行计划,合理设计索引结构,可有效提升查询性能。
2025-05-28 13:57:32
680
【数据库管理】MySQL超详细安装配置教程:Web应用开发与数据分析领域的关系型数据库环境搭建指南: -
2025-05-17
【人工智能绘画】DeepSeek文字生成图片全攻略:从创意激发到高效图片生成的操作指南
2025-05-17
编程语言Python安装与基础使用全攻略:从入门到精通的详细指南介绍了Python编程语言
2025-05-17
【AI模型部署】DeepSeek本地部署与WebUI可视化:提升数据隐私与交互体验的详细教程如何在本地环境中
2025-05-17
【大语言模型部署】DeepSeek本地部署全攻略:保姆级教程详解大模型环境搭建与应用文档的主要内容
2025-05-17
PyTorch深度学习实战常用神经网络层.docx
2024-08-14
ChatGPT大模型学习笔记.rar
2024-07-22
基于多任务卷积网络(MTCNN)和Center-Loss的多人实时人脸检测和人脸识别系统.rar
2024-07-22
Java+Servlet学生信息管理系统全部源码+SQL+课程设计文档.rar
2024-07-22
基于DBNet和CRNN的 OCR 文字检测识别系统
2025-05-21
【C语言程序设计】基于链表的图书管理系统课程设计:实现图书管理与持久化存储功能介绍了基于C语言
2025-05-18
C++编程基于面向对象的图书管理系统设计与实现:链表数据结构及文件持久化应用
2025-05-18
基于U-Net的道路目标语义分割系统
2025-05-21
基于PyTorch的医学影像辅助诊断系统源码
2025-05-20
医学影像辅助诊断系统开发教程-基于tensorflow实现
2025-05-20
基于YOLOv8 的分类道路目标系统-PyTorch实现
2025-05-20
【CTF-Misc图片隐写】基于Python的LSB隐写及工具应用:课程设计与实践总结
2025-05-19
【医学影像处理】基于计算机视觉的医学影像辅助诊断系统设计:胸部X光影像疾病检测与分析
2025-05-18
【机器人技术】基于多学科融合的智能分拣机器人开发:从机械结构到软件控制的全流程设计与实现
2025-05-18
Web开发基于PHP的俄罗斯方块游戏课程设计:PHP俄罗斯方块游戏开发全流程解析与实现
2025-05-18
【Go语言编程】基于模块化设计的超市收银系统:功能实现与数据持久化
2025-05-18
汇编语言基于8086汇编的学生成绩管理系统设计与实现:涵盖信息录入、查询、排序及文件操作功能
2025-05-18
前端开发基于TypeScript的贪吃蛇游戏课程设计:实现面向对象编程与游戏开发基础教学
2025-05-18
前端开发基于JavaScript的俄罗斯方块游戏课程设计:功能实现与用户体验优化使用JavaScript开发俄罗斯
2025-05-18
C#编程基于C#的超市收银系统课程设计:实现商品管理、扫码结账及数据持久化功能
2025-05-18
【数字信号处理】基于MATLAB的数字滤波器设计:FIR与IIR滤波器在语音去噪和图像边缘检测中的应用及性能分析
2025-05-18
【计算机科学】基于Python的超市收银系统课程设计:实现商品管理、扫码结账、总价计算与小票生成功能
2025-05-18
Java编程基于面向对象设计的图书管理系统课程设计:链表实现图书管理与持久化存储文档详细描述了一个
2025-05-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人