贴出以为大神的分析。。。。简明易懂
本题只要求给出一个解,不要求最优。所给的两个罐子容量一定互质,因此必然可以倒出从0到大罐容量间的任何整数值。原理是若A,B互质,则最小公倍数为A×B,即不存在一个1 < n < B,使得nA能被B整除。令r = nA mod B(mod为取模操作),那么当n从0到B-1变化时,r可以取到0到B-1之间的任何值。这个是很容易证明的,但我的证明过程非常不专业,还请各位数学老师给予指教!
现在的问题就是用AB两个罐子相互倒水来模拟这个数学过程。设小罐容量为A,大罐容量为B。每次将A装满后倒入B中。若第m次后B已装满,A剩下的水量为r1,则有:
- r1 = mA mod B
然后将B倒空,把A中剩余的r1装入B。又经过n次从把A装满倒入B的操作后B被装满,此时A剩下的水量为r2,则有:
- r2 = (r1 + nA) mod B
- = (mA mod B + nA) mod B
- = (m+n)A mod B
由此可知,倒的方法就是每次将A中的水倒进B,但每次在做这一步之间要先检查A、B中的水量,如果A为空,就将A装满;如果B已倒满,就将B清空。最后一定可以在某个时候在B罐中得到需要的水量。
代码如下:#include <cstdio>
int ca, cb, c, a, b;
int main ()
{
while(~scanf("%d%d%d",&ca,&cb,&c))
{
a = b = 0;
while(b!=c)
{
if(a==0)//a为空,则加满
{
a = ca;
puts("fill A");
}
if(b==cb)//b若满,则清空
{
b = 0;
puts("empty B");
}
puts("pour A B");//a倒向b
b+=a; a = 0;
if(b>cb)//若移除,则收回
{
a += b-cb;
b = cb;
}
}
puts("success");
}
return 0;
}