JAVA 学习笔记-01

本文介绍了Java如何通过编译成字节码而非直接生成可执行代码来确保程序的安全性和可移植性。JVM使用JIT编译器按需将字节码转换为本地代码,实现了高效运行。

知识点1:

Java 解决程序的安全性、可移植性性的关键是:

java编译器的输出   不是可执行的代码 ,而是字节码   一套设计用来在  java运行时系统-JVM   执行的高度优化 的指令集) 

知识点2:

JVM提供了一个字节码解译器-JIT(just in time- 即时)。 它根据需要,将字节码一部分一部分的地实时编译为可执行代码。它不能一次性把所有的字节码编译为可执行代码。

    因为java要执行各种检查,这些检查只有在运行时才进行。即:JIT 只动态编译它运行时需要的代码



////////////////////////////////////////////////////////////////////////////////////

//////|------@author       EarthWorm                ///////

//////|------@email        skdzym@sina.com  /////// 

//////////////////////////////////////////////////////////////////////////////////



内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于教学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值