思路:下载MovieLens的数据集,对数据集进行函数定义,定义各数据列的名称,根据上一篇Python写出简单的推荐系统(一) 文中的recommendations.py 的用户相似度进行推荐。
下载MovieLens的地址: http://grouplens.org/datasets/movielens/(选择ml-100k.zip), 下载后的路径可以是和recommendations.py相同,也可是任意Python下面的其他地方,后面会针对两种情况做相关说明。
将下列Python 代码添加到之前recommendations.py 里面:
这里的str1=’./ml-100k/’ 表明的是相对路径,此时的ml-100文件夹必须是和recommendations.py 文件一个路径。如果不在一个路径,因为运行的最终是recommendations.py文件,所以用的是ml-100k 全路径名,例如:
str1:’E:/Python/ml-100k’
先运行进行了更新的recommendations.py 文件,得到测试的结果:
>>>
这个部分可以进行上面2个函数测试
943
459
测试通过
表明函数式正确的,如果出现提示说’u1.base’ 或’u1.test’的格式不能读取,则可用Notepad++ 修改格式。(具体见 Notepad++修改文件编码格式 )
查看loadMovieLensTrain里的列表
>>> import recommendations
>>> prefs =recommendations.loadMovieLensTrain()
>>> prefs['1']
返回所有对应的评分数据列表
对id号为1的用户推荐三个物品:
>>>recommendations.getRecommendations(prefs,'1')[0:3]
[(5.000000000000001, '1293'), (5.0,'1653'), (5.0, '1599')]
参考资料:http://blog.csdn.net/database_zbye/article/details/8664516