knight-probability-in-chessboard(“马”在棋盘上的概率)

标签: knight-probability-in-chessboa leetcode dfs
8人阅读 评论(0) 收藏 举报
分类:

On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K moves. The rows and columns are 0 indexed, so the top-left square is (0, 0), and the bottom-right square is (N-1, N-1).

A chess knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there.

The knight continues moving until it has made exactly K moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.

Example:

Input: 3, 2, 0, 0
Output: 0.0625
Explanation: There are two moves (to (1,2), (2,1)) that will keep the knight on the board.
From each of those positions, there are also two moves that will keep the knight on the board.
The total probability the knight stays on the board is 0.0625.

 

Note:

  • N will be between 1 and 25.
  • K will be between 0 and 100.
  • The knight always initially starts on the board.

 

这道题给了我们一个大小为NxN国际象棋棋盘,上面有个骑士,相当于我们中国象棋中的马,能走‘日’字,给了我们一个起始位置,然后说允许我们走K步,问走完K步之后还能留在棋盘上的概率是多少。那么要求概率,我们必须要先分别求出分子和分母,其中分子是走完K步还在棋盘上的走法,分母是没有限制条件的总共的走法。那么分母最好算,每步走有8种跳法,那么K步就是8的K次方种了。关键是要求出分子,博主开始向的方法是以给定位置为起始点,然后进行BFS,每步遍历8种情况,遇到在棋盘上的就计数器加1,结果TLE了。上论坛看大家的解法,结果发现都是换了一个角度来解决问题的,并不很关心骑士的起始位置,而是把棋盘上所有位置上经过K步还留在棋盘上的走法总和都算出来,那么最后直接返回需要的值即可。跟之前那道Out of Boundary Paths没啥本质上的区别,又是换了一个马甲就不会了系列。还是要用DP来做,我们可以用三维DP数组,也可以用二维DP数组来做,这里为了省空间,我们就用二维DP数组来做,其中dp[i][j]表示在棋盘(i, j)位置上走完当前步骤还留在棋盘上的走法总和,初始化为1,我们其实将步骤这个维度当成了时间维度在不停更新。好,下面我们先写出8种‘日’字走法的位置的坐标,就像之前遍历迷宫上下左右四个方向坐标一样,这不过这次位置变了而已。然后我们一步一步来遍历,每一步都需要完整遍历一遍棋盘的每个位置,新建一个临时数组t,大小和dp数组相同,但是初始化为0,然后对于遍历到的棋盘上的每一个格子,我们都遍历8中解法,如果新的位置不在棋盘上了,直接跳过,否则就加上上一步中的dp数组中对应的值,遍历完棋盘后,将dp数组更新为这个临时数组t,参见代码如下:

double knightProbability(int N, int K, int r, int c) {
        if (K == 0) return 1;
        vector<vector<double>> dp(N, vector<double>(N, 1));
        vector<vector<int>> dirs{{-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}};
        for (int m = 0; m < K; ++m) {
            vector<vector<double>> t(N, vector<double>(N, 0));
            for (int i = 0; i < N; ++i) {
                for (int j = 0; j < N; ++j) {
                    for(int k = 0; k < 8; k++)
                    {
                        int x = i + dirs[k][0], y = j + dirs[k][1];
                        if (x < 0 || x >= N || y < 0 || y >= N) continue;
                        t[i][j] += dp[x][y];
                    }
                }
            }
            dp = t;
        }
        return dp[r][c] / pow(8, K);
    }

也可采用动态规划的方法来解答,分析如下:

https://www.jianshu.com/p/4990e684ac09

此题是骑士跳的变种问题,即给定了马的起始位置,判断经过K次跳跃后,马还在棋盘上的概率。此题的特点在于,马可以跳到棋盘之外,只要还没完成K次跳跃,其依然可以在棋盘外进行跳跃。

马跳跃的八个方向,可以使用一个二维矩阵来存储,每一个矩阵中存储方向向量的坐标,即

{-1, -2}, {-2, -1}, {-1, 2}, {-2, 1}, {1, -2}, {2, -1}, {1, 2}, {2, 1}

之后便是生成棋盘,并针对棋盘上的某个点进行遍历,判断从棋盘某个点经过下一跳是否还在棋盘上。本质上,此处运用了动态规划的思想,即完整地去考虑所有跳跃的可能,并不断累加符合马在棋盘上的结果。思考发现,我们在遍历所有跳跃可能的时候,进行了比较多的重复运算,即可能多次跳跃到了同一个棋盘点上。因此,思考改进方法,引用一个递归迭代方法,即对于已经计算过的点,直接返回其结果即可:

vector<vector<int>> dirs{{-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}};
    double knightProbability(int N, int K, int r, int c) {
        vector<vector<vector<double>>> memo(K + 1, vector<vector<double>>(N, vector<double>(N, 0.0)));
        return helper(memo, N, K, r, c) / pow(8, K);
    }
    double helper(vector<vector<vector<double>>>& memo, int N, int k, int r, int c) {
        if (k == 0) return 1.0;
        if (memo[k][r][c] != 0.0) return memo[k][r][c]; // 已经计算过该种情况,直接返回,避免重复
        for(int i = 0; i < 8; i++){
            int x = r + dirs[i][0], y = c + dirs[i][1];
            if (x < 0 || x >= N || y < 0 || y >= N) continue;
            memo[k][r][c] += helper(memo, N, k - 1, x, y); // 查看上一跳
        }
        return memo[k][r][c];
    }

查看评论

机器学习之概率与统计推断

本课程讲解机器学习算法所需概率和统计推断知识。概率部分包括概率公理及推论、条件概率、贝叶斯公式、随机变量及其概率函数(CDF/pdf)、常用概率分布及其均值、方差;统计推断部分包括大数定律和中心极限定理、极大似然估计、贝叶斯估计,估计的评价、偏差-方差平衡。课程还会讲解假设检验的基本概念。
  • 2017年07月22日 11:29

《棋盘上的“马步”探究》(三)

0. 问题背景 (本课题为九年级组探究课题) 在中国象棋中,马的走法是一直一斜,棋谚“马走日字”(本质上说,“马走日字”是走1×2 矩形的对角线)。从棋盘上任意一点出发,马能跳到任意...
  • jwg2732
  • jwg2732
  • 2017-11-13 09:00:05
  • 115

LightOJ1010 棋盘上能放的最多马数

Knights in ChessboardLightOJ - 1010  Given an Those who are not familiar with chess knights, note th...
  • xxxslinyue
  • xxxslinyue
  • 2017-03-18 20:06:32
  • 389

MFC-马的遍历(马跳棋盘)

  • 2014年07月25日 16:57
  • 21.54MB
  • 下载

內固——n*n的棋盘上最多可以放多少个马

哈密顿链、哈密顿圈
  • nameofcsdn
  • nameofcsdn
  • 2016-09-23 11:17:23
  • 2260

《棋盘上的“马步”探究》(四)

0. 问题背景 (本课题为九年级组探究课题) 在中国象棋中,马的走法是一直一斜,棋谚“马走日字”(本质上说,“马走日字”是走1×2 矩形的对角线)。从棋盘上任意一点出发,马能跳到任意...
  • jwg2732
  • jwg2732
  • 2017-11-17 16:01:05
  • 80

poj1657-Distance on Chessboard(棋盘上的距离)-C语言-简单计算

简单的计算题。 #include int king(int x,int y) { return (xy?x-y:y-x); } int queen(int x,int y) { r...
  • OrdinaryCrazy
  • OrdinaryCrazy
  • 2017-07-18 09:37:54
  • 313

马跳深度遍历8*8棋盘,输出可行遍历步骤(C++)

  • 2011年11月24日 14:50
  • 570KB
  • 下载

《棋盘上的“马步”探究》(二)

0. 问题背景 (本课题为九年级组探究课题) 在中国象棋中,马的走法是一直一斜,棋谚“马走日字”(本质上说,“马走日字”是走1×2 矩形的对角线)。从棋盘上任意一点出发,马能跳到任意...
  • jwg2732
  • jwg2732
  • 2017-11-13 08:57:51
  • 99

马的走法

在一个4X5的棋盘上,马的起始位置坐标(纵、横)位置由键盘输入,求马能返回初始位置的所有不同走法的总数(马走过的位置不能重复,马走“日”字)。...
  • a997930294
  • a997930294
  • 2013-08-30 10:11:16
  • 1066
    个人资料
    持之以恒
    等级:
    访问量: 9万+
    积分: 2519
    排名: 1万+
    最新评论