Deep Adversarial Subspace Clustering 理解

Deep Adversarial Subspace Clustering 理解

翻译链接:https://blog.csdn.net/shaodongheng/article/details/82932612

主要理一下过程,仅个人见解。

以上图的模型结构为例:

假设输入的图象集合为\mathbf{X},则通过卷积自动编码器(Encoder)之后得到\mathbf{Z}\mathbf{Z}作为自我表示层的输入得到输出\mathbf{Z}\Theta _{c}\Theta _{c}是自我表示层的权重矩阵,即自我表示系数矩阵。同时得到affinity matrix ,然后利用NCut算法和affinity matrix \mathbf{\Lambda}聚类,得到K个聚类C。

自表示层损失:

 \mathbf{Z}= \left [ z_{1},... ,z_{n} \right ]\in R^{d\times n} ,即共n个样本表示,每个样本表示d维。

\Theta _{c}\in R^{n\times n}是自我表示系数矩阵。

Real data:

聚类C_{i}\left ( i=1,... ,K \right )m_{i}个样本,采样层计算聚类C_{i}中每个样本的对应到S_{i}上的映射残差

z_{i_{j}} 为聚类C_{i}中的第 j 个样本的样本表示。然后选择具有较小残差的\bar{m}_{\ast }^{i}个“真实”数据,\bar{m}_{\ast }^{i}=\alpha m_{i} \left ( \alpha \in \left [ 0.8,0.95 \right ] \right )

Fake data:

对于每个具有m_{i}个样本的簇C_{i},采样层先从(0,1]均匀分布中采样\bar{m}_{\ast }^{i}个随机向量,然后生成\bar{m}_{\ast }^{i}个假数据

\alpha _{tj}为标量,即向量 \alpha _{t}的第 j 项,\alpha _{t}m_{i}项;z_{i_{j}}为聚类C_{i} 的第 j 个样本表示,z_{i}m_{i}个样本表示;该式即表示\alpha _{t}的每一项与聚类C_{i} 中的对应样本表示相乘,并求和(线性组合),从而得到对应的假数据\bar{z}_{t} ,共得到\bar{m}_{\ast }^{i}个假数据。

U_{i}的初始化:

  ,\mathbf{r_{i}}的大小在不同数据集有不同定义。U_{i}是鉴别器的参数矩阵。使用簇C_{i}中的表示,通过QR分解来计算U_{i}。即在由z_{i_{j}}构成的特征矩阵上使用QR分解来计算其对应的U_{i} ,即每个簇C_{i}的样本表示矩阵都计算一个U_{i},应该是QR的Q矩阵。U_{i} 的每一列都服从

 U_{i}的更新和鉴别器损失:

 ,\varepsilon是一个小的正参数。

 ,\beta _{1}是大于0的常数

 ,\beta _{2}是大于0的常数,\mathbf{I}是单位矩阵

鉴别器最终的训练目标是:

DASC中的鉴别器可以由两个全连接层的K个线性网络实现,即每个聚类对应一个线性网络。 此外,在每个网络中,两个层共享它们的参数U_{i}。 对于输入数据z_{j},第一层和第二层的输出分别是U_{i}z_{j}U_{i}U_{i}^{T}z_{j}。 通过最小化鉴别器损失,可以学习参数 。 

生成器损失:

最终的损失函数:

G的最终训练目标是将这种对抗性损失\mathfrak{L}_{a}与样本重建损失和自我表示损失相结合(自动编码器,自我表示层,自动解码层都属于生成器)

表示所有的输入样本,\hat{\mathbf{X}}表示自编码器-解码器对X的重构后的表示。这里\Theta表示生成器的参数,包括编码器和解码器中的参数,以及自表达层中的表示系数\Theta _{c}。 第二项表示自动编码器-解码器的重建损失,而后两项对应于等式(2)中的自我表示损失。 在\Theta _{c}上采用F-范数惩罚。

生成器和鉴别器更新:

在每个时期内异步更新D和G,分别为5次和1次

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值