Grid中累加

procedure TFrm_02_Wh_04.sumImp;
var
  sumImp : double;
  BookMark: Pointer;
  Lines:string;
begin
  sumImp:=0.0;
  BookMark := MDBGrid1.DataSource.DataSet.GetBookmark;
  MDBGrid1.DataSource.DataSet.First;

  while not MDBGrid1.DataSource.DataSet.Eof do begin
    Lines := MDBGrid1.Columns.Grid.Fields[11].Text;
    sumImp:=sumImp+strToFloat(Lines);
    MDBGrid1.DataSource.DataSet.Next;
  end;

  MDBGrid1.DataSource.DataSet.GotoBookmark(BookMark);
  edit1.Text:=floatToStr(sumImp);
end;

CUDA(Compute Unified Device Architecture)是NVIDIA专为并行计算设计的一种编程模型和编程环境,主要用于加速GPU上数值密集型应用。在CUDA,列向量累加通常是矩阵运算的一部分,可以高效地利用GPU的并行能力。下面是一个简单的例子,假设我们有两列向量需要相加: ```c++ #include <cuda_runtime.h> #include <thrust/host_vector.h> #include <thrust/device_vector.h> __global__ void addColumnVectors(thrust::device_vector<float>& result, thrust::const_device_vector<float> columnA, thrust::const_device_vector<float> columnB) { int row = blockIdx.x * blockDim.x + threadIdx.x; if (row < columnA.size()) { result[row] = columnA[row] + columnB[row]; } } void accumulateColumn(float* d_result, const float* d_columnA, const float* d_columnB, int size) { // 定义块大小和线程索引 dim3 blockSize(256); // 根据设备性能调整这个值 dim3 gridSize((size + blockSize.x - 1) / blockSize.x); thrust::device_vector<float> result(size); thrust::device_vector<float> columnA(size), columnB(size); // 将Host数据复制到Device cudaMemcpy(columnA.data(), d_columnA, size * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(columnB.data(), d_columnB, size * sizeof(float), cudaMemcpyHostToDevice); // 调用kernel函数 addColumnVectors<<<gridSize, blockSize>>>(result, columnA, columnB); // 将结果从Device复制回Host cudaMemcpy(d_result, result.data(), size * sizeof(float), cudaMemcpyDeviceToHost); } ``` 在这个例子,`addColumnVectors`是运行在GPU上的CUDA kernel函数,它接收一个结果向量和两个输入列向量。每个线程负责累加对应位置的元素。然后在主机端,我们将数据从主机复制到设备、调用kernel并复制结果回主机。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值