
【2025Stable Diffusion入门到实战】
文章平均质量分 93
AI绘画正在颠覆传统创作方式,而2025年将是技术爆发与行业融合的关键节点。
你将不仅学会使用主流AI绘画工具(如Stable Diffusion、MidJourney、DALL·E 4.0),还能深入理解ControlNet、LoRA模型微调等进阶技术,结合Photoshop、Blender等工具
再见孙悟空_
CSDN专家博主,阿里云技术社区专家博主,华为云享专家博主,51CTO博客专家博主。擅长技术领域:人工智能、移动开发。熟悉业务领域:能源行业、建筑行业。
展开
-
【2025 Stable Diffusion ControlNet插件详解】【9.ControlNet语义分割模型】
语义分割模型在ControlNet中的应用,标志着AI图像生成从"创意主导"向"精确控制"的重要转变。通过结合语义分割、深度估计、边缘检测等多模态控制手段,创作者能够实现从宏观场景到微观细节的全方位把控。未来,随着轻量化模型、实时分割技术和多模态交互的进一步发展,ControlNet将在数字孪生、元宇宙内容生成等领域发挥更大价值。通过系统掌握语义分割模型的原理、参数调优和实战技巧,创作者能够充分释放Stable Diffusion的潜力,实现从"AI辅助"到"AI协同"的工作流升级。2.2 关键参数详解。原创 2025-05-07 15:13:00 · 621 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【8.ControlNet色彩模型】
2025年更新的Color ControlNet已经支持动态渐变控制和材质反射率调节,配合SDXL 2.0的10亿参数模型,设计师甚至可以精确到“丝绸 vs 哑光”级别的色彩质感控制。颜色控制不是取代设计师,而是让我们从重复劳动中解放,专注于创意表达!参考资料Canny+Color模型修改细节案例Recolor模型上色原理商业设计中的颜色锁定技巧T2I-Adapter辅助光影控制。原创 2025-05-07 15:04:44 · 387 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【5.ControlNet五种轮廓模型】
通过本指南,您将全面掌握ControlNet的五种轮廓模型,从技术原理到实战应用,从参数优化到行业案例,为您的AI绘画工作流注入强大的控制力。建议在实际应用中结合具体需求选择模型组合,并通过参数调优实现最佳效果。Canny边缘检测模型基于经典图像处理算法,通过双阈值(高低阈值)实现边缘的精准提取。实现与Stable Diffusion的融合,其预处理器为。,支持对输入图像进行边缘提取后生成符合边缘结构的新图像。在ControlNet中,Canny模型通过。,支持对建筑、工业设计等直线结构的精准控制。原创 2025-05-07 14:40:16 · 453 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【4.个性二维码实战】
1. 最佳实践总结艺术化优先级:定位符保护 > 容错率 > 视觉创意多模态控制顺序:结构控制(ControlNet)> 风格控制(LoRA)> 细节优化(提示词)性能优化公式:显存占用 = 分辨率² × 模型复杂度 × 控制条件数2. 资源列表模型库Civitai(https://civitai.com):QR Code专用LoRA与ControlNet模型Hugging Face(https://huggingface.co):官方SDXL模型与社区优化版本工具链学习社区。原创 2025-05-08 09:37:07 · 311 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【14.ControlNet 图像提示迁移模型实战】
数据采集目标:训练风格迁移模型,需收集1000+对(参考图,目标图)。工具:使用批量打标签,提取图像特征。预处理图像对齐:使用birme工具统一分辨率至512x512。特征提取:通过SPIGA模型生成面部特征点,或使用数据集。原创 2025-05-07 16:46:52 · 508 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【15.ControlNet 特效功能实战】
ControlNet是Stable Diffusion生态中革命性的控制工具,通过引入额外的神经网络分支,实现对扩散过程的精准干预。其核心机制是在预训练模型基础上,通过端到端训练构建控制信号通路,允许用户通过图像、姿态、深度等空间语义信息引导生成。2025年,ControlNet将支持实时调整参数,用户可通过滑块实时改变光照角度、姿态权重等,直接预览生成效果。ControlNet Union等模型将进一步整合文本、语音、手势等多模态输入,例如通过语音描述直接调整图像中的光照方向,或通过手势控制人物动作。原创 2025-05-07 17:11:50 · 1027 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【12.ControlNet 面部模型】
其核心机制是通过引入"条件扩散模型",将用户输入的图像特征(如边缘/深度/姿势)与文本提示词进行联合建模。引入自适应权重分配机制,可根据图像复杂度自动调整ControlNet与提示词的干预比例,解决传统固定权重导致的细节丢失问题。新增支持3D点云数据、视频关键帧序列作为输入条件,实现动态场景生成(如人物连续动作动画)模型体积缩小60%的同时保持98%的精度,4GB显存设备可流畅运行所有预处理模块。预计2026年将支持NeRF数据输入,实现3D场景实时生成。实验室环境下的量子版本生成速度提升1000倍。原创 2025-05-07 16:26:02 · 439 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【10.ControlNet pose姿态模型】
ControlNet Pose模型是基于OpenPose人体姿态估计框架与Stable Diffusion深度融合的产物。其核心技术路径如下:技术突破点:数据来源:NVIDIA A100实测数据(2025年3月)硬件要求:软件安装:安装OpenPose依赖:2.2 参数设置与调优策略基础参数配置:高级参数调优:关键点增强:2.3 多模态控制实战案例1:单人复杂动作生成生成结果:关节角度误差≤2.3°手指动作还原度91%生成耗时:4.2s/step案例2:多人协同原创 2025-05-07 15:39:41 · 599 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【7.ControlNet空间识别模型】
今天咱们来扒一扒Stable Diffusion里最硬核的插件——ControlNet的空间识别模型!这玩意儿能让AI精准控制画面的空间结构,就像给SD装上了GPS导航。从建筑设计到游戏场景,从3D建模到二次元线稿,只要你能想到的空间控制需求,它都能搞定。原创 2025-05-07 14:56:25 · 643 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【6.ControlNet重绘修复模型】
今天咱们要深入聊聊Stable Diffusion里的ControlNet插件,特别是第六部分——重绘修复模型。这玩意儿可是AI绘画界的「PS神器」,能让你像捏橡皮泥一样重塑画面。咱们直接上干货,不讲虚的。原创 2025-05-07 14:52:27 · 586 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【1.Reactor更换面部实战】
通过以上全流程解析,您将掌握 Reactor 在 2025 年的最新应用技巧,实现从基础换脸到复杂场景处理的全链路操作。建议在实际操作中结合自身硬件条件与项目需求,灵活调整参数配置,不断探索 AI 图像处理的边界。Reactor 作为 2025 年最先进的面部替换工具,基于 InsightFace 人脸识别库与 OpenCV 图像处理框架构建。:安吉丽娜·朱莉(正脸,1024x1024):中世纪女战士(分辨率 1024x1536):普通用户照片(300DPI,白色背景):护照规格(35x45mm)原创 2025-05-07 17:31:03 · 726 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【2.Instant ID的换脸实战】
而Instant ID作为其中最具革命性的换脸插件,通过结合ControlNet与IP-Adapter技术,实现了单张参考图的高精度人脸替换。本文将以工业级实战标准,从技术原理到工程落地全面解析Instant ID的换脸流程,并通过多个行业案例展示其应用潜力。通过本文的实战指南,读者将掌握从环境搭建到复杂场景处理的全流程技术,并了解如何在法律框架内最大化技术价值。未来,随着3D重建、实时渲染等技术的融合,Instant ID将进一步拓展AI在数字内容创作中的边界。Instant ID采用。原创 2025-05-07 17:40:39 · 618 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【11.ControlNet 特效生成模型】
ControlNet在2025年已从单纯的图像控制工具进化为全流程AIGC操作系统。通过多模态控制融合、动态参数优化和行业级解决方案,它正在重塑数字内容创作的范式。掌握这一技术不仅需要熟练的参数调校能力,更需要对艺术创作和工程实现的深刻理解。建议从业者持续关注官方文档更新,并积极参与社区技术交流,以充分释放ControlNet的潜力。原创 2025-05-07 15:44:43 · 393 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【13.ControlNet 线稿上色实战】
通过上述系统化的技术解析与实战案例,读者可以全面掌握ControlNet线稿上色的核心技术。建议在实践中建立参数调节日志,记录不同线稿类型的最佳参数组合,逐步形成个人化的工作流模板。随着AI技术的持续发展,ControlNet的应用场景还在不断扩展,保持对前沿技术的关注将有助于在创作中持续保持竞争力。原创 2025-05-07 16:42:49 · 650 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【16.ControlNet 艺术符号设计实战】
通过上述内容,读者将全面掌握ControlNet在艺术符号设计中的核心技术、实战技巧与前沿趋势,实现从概念到视觉的高效转化。艺术符号设计的本质是将抽象概念转化为视觉语言,其核心在于。原创 2025-05-07 17:20:39 · 620 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【3.藏字头像实战】
关键总结藏字头像的核心是通过ControlNet精确控制文字的光影、颜色和纹理。2025年WebUI的性能优化(如FP8、LCM采样器)显著提升生成效率。多模型联用和参数精细化调整是实现高质量效果的关键。资源推荐模型下载:Liblib.ai、Shakker(国际化模型)。插件工具:ControlNet v1.1.220、OpenPose Editor(姿势编辑)。学习社区:CSDN博客、慕课网(实战教程)。原创 2025-05-08 09:34:49 · 277 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【5.三维软件去精准辅助Stable Diffusion出高质量图实战】
三维软件(如Blender、3ds Max)与Stable Diffusion(SD)的结合,通过精准结构控制+AI艺术化渲染,可突破传统SD生成的空间限制。三维建模:构建精确的场景结构与比例数据导出:输出深度图、法线图、摄像机参数等SD控制生成:利用ControlNet、Depth Maps等工具约束生成无限圣杯插件:直接在Blender内调用SD生成纹理、材质Depth Maps导出:通过Blender渲染层输出场景深度信息。原创 2025-05-08 09:40:06 · 331 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 实战案例】【6.模特换装实战】
通过以上全流程解析,你将掌握从基础换装到复杂场景处理的核心技术,结合2025年WebUI的最新功能,实现高效、精准的模特换装创作。建议从简单案例入手,逐步尝试多LoRA叠加、多ControlNet控制等高级技巧,持续探索AI生成与创意设计的融合边界。原创 2025-05-08 09:45:21 · 551 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 视频实战】【EBS 舞蹈动画转绘全流程深度解析】
本文系统阐述了基于Stable Diffusion WebUI 1.8.0和EBS工作流的舞蹈动画转绘全流程,从技术架构、核心流程、实战案例到高级优化进行了深度解析。通过结合ControlNet姿态控制、LoRA风格扩展和EB Synth帧间插值,实现了从原始视频到高质量动画的自动化转换。随着硬件性能的提升和算法的不断优化,AI动画生成将在影视制作、游戏开发、文化创意等领域发挥越来越重要的作用。参考文献ebsynth_Utility 插件官方文档。原创 2025-05-08 09:49:30 · 324 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【10.CodeFomer模型实战】
模型采用 U-Net 结构作为基础网络,在编码器部分新增了代码语义解析模块(Code Semantic Parser),能够将自然语言描述或图像特征转化为代码结构树。通过本文的学习,您将掌握 CodeFomer 模型的核心原理、Stable Diffusion WebUI 的深度配置、代码生成的高级技巧,以及实际项目中的全流程应用。开发一个基于 Stable Diffusion 的图像生成工具,支持文本输入、图像修复、高清放大功能。:生成一个 Flask RESTful API 接口。原创 2025-05-07 11:39:29 · 579 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【8. Lama Cleaner清除一切插件的详细使用】
通过本指南的学习,您将掌握Lama Cleaner的核心原理、高级操作技巧及性能优化策略。在实际应用中,建议根据具体修复需求灵活调整参数组合,并结合ControlNet等工具实现更精准的修复效果。对于复杂修复任务,推荐采用多模型协同工作流以提升修复质量。Lama Cleaner基于LaMa算法(Large Mask Inpainting)构建,该算法采用傅里叶卷积神经网络架构,能够处理高达1024x1024像素的大面积修复任务。Lama Cleaner修复。Lama Cleaner修复。原创 2025-05-07 11:21:13 · 587 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【2.局部重绘Inpainting功能参数详解】
通过掌握蒙版模式、填充策略、采样器选择等关键参数,结合ControlNet、LoRA等扩展工具,用户可实现从简单修复到复杂创作的全流程控制。随着2025年技术的进一步发展,Inpainting将在影视、设计、教育等领域发挥更大价值,推动AIGC进入精细化创作时代。Stable Diffusion WebUI的Inpainting功能基于**蒙版(Mask)**实现局部区域的定向生成,其底层逻辑是通过控制扩散模型的去噪过程,在蒙版覆盖区域注入新的语义信息。原创 2025-05-07 10:10:53 · 980 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【3.涂鸦重绘Inpainting Sketch功能详解】
通过深度调校参数、结合多模态条件以及优化硬件配置,用户可在图像修复、创意设计、影视制作等领域实现高效创作。建议初学者从基础案例入手,逐步掌握参数规律,再通过模型定制和工具协同提升创作效率。Inpainting Sketch功能作为Stable Diffusion WebUI的核心模块,其核心价值在于。2025年的Inpainting Sketch功能基于。原创 2025-05-07 10:15:07 · 551 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【6.Segment Anything辅助抠图功能详解】
SAM核心能力:零样本分割、交互式优化、高效推理。SD WebUI集成:插件安装、模型配置、参数调优。实战技巧:复杂背景处理、批量自动化、多工具协同。原创 2025-05-07 11:08:43 · 437 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【1.涂鸦Sketch功能详解】
通过本指南的深度解析,读者可全面掌握Stable Diffusion WebUI涂鸦Sketch功能的原理、操作与实战技巧。建议结合硬件配置与插件生态,构建个性化的创作工作流。持续关注官方更新与社区动态,以获取最新功能与模型资源。:将涂鸦草图转化为赛博朋克风格数字艺术。:根据涂鸦草图生成高分辨率产品渲染图。:根据涂鸦布局生成3D效果图。原创 2025-05-07 09:57:49 · 497 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【14.Tiled Diffusion分块放大插件详解】
Tiled Diffusion插件通过分块处理和算法创新,彻底打破了Stable Diffusion的分辨率限制。建议根据硬件配置灵活选择方案(如MultiDiffusion适合重绘,Mixture of Diffusers适合生成),并结合ControlNet和动态提示词提升细节精度。未来随着模型轻量化和分布式计算技术的发展,分块放大将成为生成超高清图像的主流方案,为影视制作、游戏开发等领域提供颠覆性工具。原创 2025-05-07 11:59:31 · 595 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【4.上传蒙版Inpainting upload功能擦参数详解】
通过以上内容,您将全面掌握Stable Diffusion WebUI中上传蒙版Inpainting功能的核心参数、调参策略、实战案例及前沿应用。该技术已在影视修复、工业设计、游戏开发等领域取得显著成效,未来将继续推动AIGC技术在创意产业的深度应用。在Stable Diffusion的潜在空间(Latent Space)中,蒙版(Mask)是一个与原图尺寸相同的二维矩阵,其像素值范围为0-1。原创 2025-05-07 10:36:11 · 487 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【2.ControlNet的起源及工作原理详解】
ControlNet的出现彻底改变了AI绘画的可控性边界,其双分支架构设计为多模态生成提供了通用解决方案。尽管当前仍存在计算资源需求高、语义理解不足等问题,但随着模型轻量化、动态控制网络等技术的发展,未来有望在自动驾驶、影视制作、工业设计等领域实现更广泛的应用。架构,在不修改原生模型的前提下实现了对生成过程的精细化控制。,即在不破坏原生模型性能的前提下,为其注入条件控制能力。实验数据显示,ControlNet在COCO数据集上的结构保留率提升37%,而训练成本仅为全模型微调的1/20。原创 2025-05-07 14:28:03 · 368 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【3.从基础原理到工业级应用全攻略】
通过本文的系统学习,读者将掌握ControlNet在2025年的全功能体系,包括工业级控图、多模态协同、性能优化等核心技术,并能够在建筑设计、游戏开发、影视制作等领域实现落地应用。建议结合实际项目进行参数调优和工作流设计,充分发挥ControlNet的无限潜力。ControlNet通过在Stable Diffusion的U-Net中插入可训练的控制分支,实现对生成过程的语义级干预。原创 2025-05-07 14:31:39 · 439 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【7.Inpaint Anything蒙版获取功能详解】
Inpaint Anything功能通过深度整合SAM、ControlNet和Stable Diffusion,实现了从蒙版生成到精细化控制的全流程自动化。通过掌握模型选择、参数优化和高级技巧,用户可以在电商设计、影视后期、艺术创作等领域大幅提升工作效率。2025年的技术迭代将进一步推动图像编辑的智能化与自动化,建议开发者关注SAM 2.0和分布式渲染技术的落地应用。Inpaint Anything插件。原创 2025-05-07 11:18:08 · 568 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【4.ControlNet基础界面使用指南】
ControlNet的核心优势在于**“可控性”与“灵活性”的平衡**。通过合理配置控制类型、权重和引导参数,用户可以实现从线稿到成品、从姿势到场景的全流程精准控制。建议新手从单一控制类型(如Canny)入手,逐步尝试多模型叠加和动态参数调整。对于商业应用,可结合LoRA模型(如)进一步细化生成结果,实现工业化级别的AI绘图。进阶技巧混合控制类型:Canny + Depth实现结构与空间双重约束。动态权重调整:使用插件实现权重随步数变化。多模态控制。原创 2025-05-07 14:36:14 · 550 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【12.text2img图像反放大Hires.fix功能详解】
已成为Stable Diffusion生态中不可或缺的组成部分。随着2025年多尺度扩散模型和量子加速技术的落地,Hires.fix将进一步推动AI生成图像向超高清、超真实方向发展,为数字内容创作带来革命性变革。Hires.fix功能通过潜空间放大与扩散修复的深度结合,实现了图像分辨率与细节质量的双重突破。:直接生成的800x600图像存在人物多手、背景断裂问题。Hires.fix的核心技术是。原创 2025-05-07 11:52:06 · 535 阅读 · 0 评论 -
【2025 Stable Diffusion ControlNet插件详解】【1.Lora模型去辅助风格化生图】
通过将ControlNet的结构控制能力与Lora的风格迁移能力深度融合,创作者能够实现从宏观构图到微观笔触的全流程控制。未来,随着IC-Light等新技术的发展,光照控制将成为风格化生成的新焦点。Stable Diffusion生成。ControlNet模块。NormalMap生成。原创 2025-05-07 14:17:18 · 601 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【11.GFPGAN模型实战】
GFPGAN核心原理模型架构损失函数版本演进U-NetStyleGAN2感知损失对抗损失v1.4特性。原创 2025-05-07 11:42:52 · 1317 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【9.生成图像的后期处理详解】
通过上述技术体系,您将能够系统性地提升Stable Diffusion生成图像的质量,实现从基础生成到专业级创作的跨越。建议定期参与社区交流,获取最新模型与技巧,保持技术领先。参数,可提升生成稳定性(尤其是Ampere架构显卡)。,保持插件与模型库为最新版本。原创 2025-05-07 11:24:58 · 449 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【15. 图像增、删、改、换后期操作详细实战】
通过深度整合ControlNet、Lora、Inpaint等核心工具,结合第三方插件生态,用户可以实现从像素级修复到创意设计的全流程控制。未来,随着3D控制、视频生成等技术的成熟,AI图像编辑将进一步向专业级内容创作领域渗透。建议开发者关注官方更新,积极参与社区实践,持续提升技术能力。2025年Stable Diffusion WebUI 1.8.0版本带来了革命性的更新,重点强化了图像后期处理能力。:修复1950年代褪色照片,移除水印,增强人物细节。:移除古建筑上的现代广告牌。ControlNet控制。原创 2025-05-07 14:08:40 · 549 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【5.Soft Inpainting的使用介绍】
Soft Inpainting是基于Stable Diffusion的Inpainting功能升级的高级图像修复技术,其核心原理是通过非二值蒙版(soft-edged mask)实现原始内容与修复内容的无缝融合。在扩散过程中,Soft Inpainting会对原始潜向量(original latent vectors)和去噪潜向量(denoised latent vectors)进行插值计算,插值权重由蒙版的透明度决定。该算法通过求解泊松方程,使修复区域的梯度与原始区域保持一致,从而实现无缝衔接。原创 2025-05-07 10:53:21 · 459 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 进阶指南】【13.img2img图像放大功能详解】
通过深度掌握参数调优、多方法组合及显存优化策略,即使在低配置硬件上也能实现高质量图像放大。建议根据场景需求灵活选择方法(如动漫用R-ESRGAN,写实用4x-UltraSharp),并结合ControlNet和动态提示词提升细节精度。未来随着模型轻量化和硬件性能提升,AI放大技术将进一步突破分辨率极限,为创意工作流带来更多可能性。原创 2025-05-07 11:56:33 · 492 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 基础详解】【11.img2img真人变二次元实战】
通过以上步骤,用户可系统性掌握img2img真人转二次元的全流程技术,从基础参数调整到高级控制技巧,再到性能优化与版权合规,实现专业级的AI绘画效果。建议在实际操作中结合具体需求进行参数微调,并持续关注社区更新以获取最新模型与工具。(Soft Redraw Mode),通过动态调整扩散过程中的噪声注入比例,实现原图与生成内容的平滑融合。在2025年的Stable Diffusion WebUI 1.8.0版本中,img2img模块引入了。输入图片:1024x1536像素的正面人像照片(光线充足,面部清晰)原创 2025-05-06 16:51:32 · 427 阅读 · 0 评论 -
【2025 Stable Diffusion WebUI 基础详解】【5.text2img到img2img的转换实操】
2025 年的 Stable Diffusion WebUI 已从单纯的图像生成工具进化为全流程创意平台,其核心在于通过参数组合实现“可控的创造力”。未来,随着多模态技术的成熟,Stable Diffusion 将进一步渗透到 3D 建模、视频生成等领域,成为数字内容创作的基础设施。text2img 是基于文本提示词直接生成全新图像的过程,其核心是将文本嵌入向量与随机噪声通过 U-Net 模型逐步去噪,最终生成符合语义的图像。原创 2025-05-06 16:06:56 · 540 阅读 · 0 评论