- 博客(1)
- 资源 (5)
- 收藏
- 关注
原创 大数据开发高薪训练营--HBase协处理
最近大数据技术陷入了瓶颈,偶然间发现拉钩大数据开发高薪训练营课程,主要是被他的用户画像匹配系统吸引,据说是用拉钩真实数据进行讲解。本来对一些基础知识包括mapreduce,hive,hbase等讲解没有报太多希望,没想到听了几节课后,我反而发现有很多知识点我这么多年都忽略了。市面上的很多课程我也都听了,讲的内容大多数都是只有宽度没有深度,拉钩教育确实与众不同,我想主要是他的授课模式的创新,类似好未来那种 名师讲解 + 小班答疑。拉钩教育便是采用的这种模式,知识点都是知名讲师先录好,学生在线自主...
2020-08-09 16:22:25 942
Elasticsearch技术解析与实战
Elasticsearch是一个强大的搜索引擎,提供了近实时的索引、搜索、分析功能。Elasticsearch技术解析与实战是作者根据自己多年的开发经验,总结了使用和开发Elasticsearch的实战经验。本书全面介绍Elasticsearch系统结构与功能配置,以及实际应用案例,包括工具、方法、原则和佳实践。主要内容包括Elasticsearch基本概念与配置,索引的基本概念、管理与设置,架构设计中的字段、对象、映射,搜索中的结构、各种查询方式,聚合中的数字聚合、桶聚合、管道聚合,集群中的监控方式、配置案例,分析模块中的中文分词器、过滤器,高级设置中的关键点,监控与安全方面的技巧,ELK综合示例等。2017
2017-12-15
SIFT算法英文原文
Sift是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。在Mikolajczyk对包括Sift算子在内的十种局部描述子所做的不变性对比实验中,Sift及其扩展算法已被证实在同类描述子中具有最强的健壮性。
总体来说,Sift算子具有以下特性:
(1)Sift特征是图像的局部特征,对平移、旋转、尺度缩放、亮度变化、遮挡和噪声等具有良好的不变性,对视觉变化、仿射变换也保持一定程度的稳定性。
(2)独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。
(3)多量性,即使少数的几个物体也可以产生大量Sift特征向量。
(4)速度相对较快,经优化的Sift匹配算法甚至可以达到实时的要求。
(5)可扩展性强,可以很方便的与其他形式的特征向量进行联合。
2010-03-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人