利用Matplotlib进行数据可视化

Matplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表。

Matplotlib的图像是画在figure(如windows,jupyter窗体)上的,每一个figure又包含了一个或多个axes(一个可以指定坐标系的子区域)。最简单的创建figure以及axes的方式是通过pyplot.subplots命令,创建axes以后,可以使用Axes.plot绘制最简易的折线图。

一、简单的例子

import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()  # 创建一个包含一个axes的figure
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]);  # 绘制图像

../_images/index_2_0.png

和MATLAB命令类似,可以通过一种更简单的方式绘制图像,matplotlib.pyplot方法能够直接在当前axes上绘制图像,如果用户未指定axes,matplotlib会帮你自动创建一个。所以上面的例子也可以简化为以下这一行代码。

line =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) 

../_images/index_4_0.png

 

二、Figure的组成

通过一张figure解剖图,我们可以看到一个完整的matplotlib图像通常会包括以下四个层级,这些层级也被称为容器(container)。在matplotlib的世界中,我们将通过各种命令方法来操纵图像中的每一个部分,从而达到数据可视化的最终效果,一副完整的图像实际上是各类子元素的集合。

  • Figure:顶层级,用来容纳所有绘图元素

  • Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成

  • Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素

  • Tick:axis的下属层级,用来处理所有和刻度有关的元素

 三、两种绘图接口

matplotlib提供了两种最常用的绘图接口

  1. 显式创建figure和axes,在上面调用绘图方法,也被称为OO模式(object-oriented style)

  2. 依赖pyplot自动创建figure和axes

接口一:

x = np.linspace(0, 2, 100)

fig, ax = plt.subplots()  
ax.plot(x, x, label='linear')  
ax.plot(x, x**2, label='quadratic')  
ax.plot(x, x**3, label='cubic')  
ax.set_xlabel('x label') 
ax.set_ylabel('y label') 
ax.set_title("Simple Plot")  
ax.legend() 
plt.show()

../_images/index_6_0.png

 接口二绘制相同的图则为:

x = np.linspace(0, 2, 100)

plt.plot(x, x, label='linear') 
plt.plot(x, x**2, label='quadratic')  
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
plt.show()

../_images/index_8_0.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值