- 博客(6)
- 收藏
- 关注
原创 天池ML训练营 Day06 朴素贝叶斯【模拟离散数据集】
模拟离散数据集–贝叶斯分类 Step1: 库函数导入 Step2: 数据导入&分析 Step3: 模型训练&可视化 Step4: 原理简析
2020-12-20 23:57:07 125
原创 天池ML训练营 Day05 朴素贝叶斯【鸢尾花分类】
莺尾花数据集–贝叶斯分类流程: Step1: 库函数导入 Step2: 数据导入&分析 Step3: 模型训练 Step4: 模型预测 用到的库: sklearn.naive_bayes
2020-12-19 22:50:47 199 1
原创 天池ML训练营 Day04 朴素贝叶斯【理论】
朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。当年的垃圾邮件分类都是基于朴素贝叶斯分类器识别的。 优点: 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。 对缺失数据不太敏感,算法也比较简单,常用于文本分类。 分类准确度高,速度快。 缺点: 由于使用了样本属性独立性的假设,所以如
2020-12-18 23:14:38 110 1
原创 天池ML训练营 Day03 基于鸢尾花(iris)数据集的逻辑回归分类实践
Day03 为实战环节啦,又学习了一下,大概知道求解系数向量θ的原理了,其实也是作出损失函数(评价函数),使其最小化,从而找到最合适的θ向量的数值。没有闭式解,还是要用梯度下降法,在库函数里面设置参数(求解方式)就好了。有时间再来详细更新一下。 代码比较多,由于时间原因,没有完全在jupyter notebook上手敲复现,在DSW页面上实现了。看懂了源码,内容很多,就不贴图了。 这里以这个鸢尾花的例子说明一下“逻辑回归的”算法流程吧。 Step1:库函数导入 Step2:数据读取/载入 Step3:利用
2020-12-17 21:30:01 232
原创 天池ML Day2 逻辑回归 demo实践
天池ML Day2 逻辑回归 demo实践 Step1. 库函数导入 导入基础函数库 import numpy as np 导入画图库 import matplotlib.pyplot as plt import seaborn as sns 导入逻辑回归模型函数 from sklearn.linear_model import LogisticRegression Step2. 生成训练数据集 构造数据集 x_features为输入,6*2矩阵,每个样本有两个特征值 y为对应标记 x_fearures =
2020-12-16 21:43:23 173
原创 天池ML训练营 Task01 逻辑回归理论部分
天池ML训练营 Task01 逻辑回归理论部分逻辑回归 本人第一次参加天池训练营,第一次在CSDN上写博客(纪念一下~),学习了task01,打卡。 逻辑回归 本人是初学者,学习过程喜欢手写笔记~学习时结合了周志华的《机器学习》(西瓜书),贴图了。 对于w和b的求解方法还是有点没看懂,后面深入学习再补充~ ...
2020-12-15 22:40:25 144
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人