【问题5】:《估算收入阶层》采用美国人口普查的数据--用了贝叶斯和随机森林,难点在数据读取

背景介绍:

      本节将根据14个属性建立分类器评估一个收入阶层,高于‘50k’的为一个阶层,低于‘50k’的为一个阶层。主要是数据的读取有点难,数据放在txt文件中,并且标签是字符串。。我最后的准确率并不是很高,大家可以调调参,或者对数据在进行处理。。数据下载地址:https://archive.ics.uci.edu/ml/datasets/Census+Income     

第一步:数据的读取

def read_data(path):
    X = []
    count_least50k = 0   # 收入低于50k
    count_morethan50k = 0  # 收入高于50k
    num_images_threshold = 10000  # 我们两种类型的数据只打算各收集10000条
    with open(path, 'r') as f:
        for line in f.readlines():
            if '?' in line:
                continue   # 代表有缺失值  我们直接扔掉  因为数据量本身很大
            data = line.strip().split(',')    # 读出当前行的数据 把标签去掉,并且把逗号空格搞掉
            # print(data)
            if data[-1] == ' <=50K' and count_least50k < num_images_threshold:
                X.append(data)
                count_least50k += 1
            elif data[-1] == ' >50K' and count_morethan50k < num_images_threshold:
                X.append(data)
                count_morethan50k += 1

            if count_least50k > num_images_threshold and count_morethan50k > num_images_threshold:
                break
    X = np.array(X)
    return X

       这里我们读取数据,并且设了一个阈值,>50k和小于50k的数据分别只读取10000条,主要是为了防止数据倾斜。。

第二步: 数据的预处理

        很明显 ,数据中存在一些字符串数据,它在一列中的取值是有限个,跟标签很像,所以,我们用sklearn中的LabelEncoder将字符串转化为数字

def process_data(data):

    # 对数据进行预处理
    Label_coder = []
    x_encoded = np.empty(data.shape)
    for i, item in enumerate(data[1]):    # 遍历每一列, 将一些字符串转换为数字
        if item.isdigit():    # 判断当前是否是数字
            x_encoded[:, i] = data[:, i]   # 是数字则不变
        else:
            Label_coder.append(LabelEncoder())   # 为每一列添加一个标签编码器
            x_encoded[:, i] = Label_coder[-1].fit_transform(data[:, i])
    X = x_encoded[:, :-1].astype(np.int)
    y = x_encoded[:, -1].astype(np.int)
    return X, y

处理后的数据:

第三步:建立模型,对数据进行预测

    这里我们分别用了贝叶斯和随机森林

def model(X, y):

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    gn = GaussianNB()
    gn.fit(X_train, y_train)

    rd = RandomForestClassifier(n_estimators=100, criterion="gini", max_depth=8)
    rd.fit(X_train, y_train)
    print("贝叶斯训练集准确率:{}, 测试集准确率:{}".format(gn.score(X_train, y_train), gn.score(X_test, y_test)))
    print("随机森林训练集准确率:{}, 测试集准确率:{}".format(rd.score(X_train, y_train), rd.score(X_test, y_test)))

输出结果:

  

源代码:

from sklearn import preprocessing
from sklearn.naive_bayes import GaussianNB
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier


def read_data(path):
    X = []
    count_least50k = 0   # 收入低于50k
    count_morethan50k = 0  # 收入高于50k
    num_images_threshold = 10000  # 我们两种类型的数据只打算各收集10000条
    with open(path, 'r') as f:
        for line in f.readlines():
            if '?' in line:
                continue   # 代表有缺失值  我们直接扔掉  因为数据量本身很大
            data = line.strip().split(',')    # 读出当前行的数据 把标签去掉,并且把逗号空格搞掉
            # print(data)
            if data[-1] == ' <=50K' and count_least50k < num_images_threshold:
                X.append(data)
                count_least50k += 1
            elif data[-1] == ' >50K' and count_morethan50k < num_images_threshold:
                X.append(data)
                count_morethan50k += 1

            if count_least50k > num_images_threshold and count_morethan50k > num_images_threshold:
                break
    X = np.array(X)
    return X

def process_data(data):

    # 对数据进行预处理
    Label_coder = []
    x_encoded = np.empty(data.shape)
    for i, item in enumerate(data[1]):    # 遍历每一列, 将一些字符串转换为数字
        if item.isdigit():    # 判断当前是否是数字
            x_encoded[:, i] = data[:, i]   # 是数字则不变
        else:
            Label_coder.append(LabelEncoder())   # 为每一列添加一个标签编码器
            x_encoded[:, i] = Label_coder[-1].fit_transform(data[:, i])
    X = x_encoded[:, :-1].astype(np.int)
    y = x_encoded[:, -1].astype(np.int)
    return X, y

def model(X, y):

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    gn = GaussianNB()
    gn.fit(X_train, y_train)

    rd = RandomForestClassifier(n_estimators=100, criterion="gini", max_depth=8)
    rd.fit(X_train, y_train)
    print("贝叶斯训练集准确率:{}, 测试集准确率:{}".format(gn.score(X_train, y_train), gn.score(X_test, y_test)))
    print("随机森林训练集准确率:{}, 测试集准确率:{}".format(rd.score(X_train, y_train), rd.score(X_test, y_test)))



if __name__ == '__main__':
    path = './data/adult.data.txt'
    data = read_data(path) # 读数据
    # print(data)
    # 接着对数据进行预处理
    X, y = process_data(data)
    print(X)
    print(y)
    print(X.shape)
    print(y.shape)

    # 下一步构造模型
    model(X, y)

 

  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

传道解惑也

打赏一下咯

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值