[leetcode] Jump Game

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example:
A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

 

思路: 从下标i开始,能走到的最远下标为i+A[i],且i~i+A[i]范围内都是可以走到的。所以遍历A,不断更新能走到的最远下标即可。当最终max>=len-1,说明max以及max之前的路径都是可以走到的,即包含在这之内的len-1这一位是可以走到的。

 

 public boolean canJump(int[] A) {
        // Start typing your Java solution below
        // DO NOT write main() function
        int len = A.length;
        
        int max = 0;//能走到的最远下标
        for(int i = 0;i<=len-1;i++){
                if(i<=max&&i+A[i]>max) max = i+A[i];
        }
        return max>=len-1;
    }

 

 

 

Jump Game IIMar 17 '127347 / 20162

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

 

思路:单源最短路径,类似于BFS, d[i]表示走到下标i的最短路径。

 

 public int jump(int[] A) {
        // Start typing your Java solution below
        // DO NOT write main() function
       int len = A.length;
       int max = 0;
       int [] d = new int[len];
       d[0] = 0;
       
       for(int i = 0;i<len-1;i++){
           if(A[i]>0){
            if(A[i]+i>=len-1) return d[i]+1;
            if(i+A[i]>max){
               for(int j = max+1;j<=A[i]+i;j++)//直接从max+1开始更新即可。因为路径                                               //肯定是以下标递增的方式走的,和图                                                //不同(图没有这种特性)。
                    d[j] = d[i]+1;
               max = i+A[i];
               
            }
           }
       }
      return d[len-1];
        
    }

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值