为什么是LangChain?

一、前言

我们知道因为一些不得已的原因,一些国外比较优秀的技术,我们不能看到,比如,如果我们想要借助 OpenAI 或 Hugging Face 创建基于大语言模型的应用程序。若非一些特殊方法,是难以实现的。从cahtgpt发布到今天不过一年时间,市面上的LLM已经百花齐放,不得不感慨技术革命的速度,为了能轻松构建大语言模型应用。不得不提起一个非常强大的第三方开源库:LangChain 。
官方文档
这个库目前非常活跃,已经67Kstart了,每天都在迭代,更新速度飞快。

LangChain 是一个我们与大模型互动的一个桥梁。他主要拥有 2 个能力:

  1. 作为大模型与本地数据的一个器哦啊两联系起来,也就是将 LLM 模型与外部数据源进行连接
  2. 让开发者与 LLM 模型进行更加友好的交互

而且:LangChain 是一个旨在帮助您轻松构建大语言模型应用的框架,它可以帮助我们:

  1. 为各种不同基础模型提供统一接口(参见Models)
  2. 帮助管理提示的框架(参见Prompts),能够实现,多个prompt 配合使用。
  3. 一套中心化接口,用于处理长期记忆(Memory)、外部数据(Indexes)、其他 LLM(Chains)以及 LLM 无法处理的任务的其他代理(例如,计算或搜索)。
    LLM 模型:Large Language Model,大型语言模型

LangChain是一个用于开发由语言模型驱动的应用程序的框架。它使应用程序能够:
具有上下文意识:将语言模型与上下文源(提示指令,少量示例,基于其响应的内容等)联系起来。
推理:依靠语言模型进行推理(关于如何根据提供的上下文进行回答,采取什么行动等)。
朗链的主要价值支柱有:
组件:用于处理语言模型的抽象,以及每个抽象的实现集合。组件是模块化的,易于使用,无论你

二、认识langchain

1. langchain的主要组成

LangChain 6大核心模块

Models:从不同的 LLM 和嵌入模型中进行选择
Prompts:管理 LLM 输入
Chains:将 LLM 与其他组件相结合
Indexes:访问外部数据
Memory:记住以前的对话
Agents:访问其他工具

2. 总览LangChain

langchain是个优雅的框架。

Models:从不同的 LLM 和嵌入模型中进行选择
支持多种模型接口,比如 OpenAI、Hugging Face、AzureOpenAI …
Fake LLM,用于测试
缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL用量记录
支持流模式(就是一个字一个字的返回,类似打字效果)

Prompts:管理 LLM 输入
Prompt管理,支持各种自定义模板
拥有大量的文档加载器,比如 Email、Markdown、PDF、Youtube …

Indexes:访问外部数据
对索引的支持
文档分割器
向量化
对接向量存储与搜索,比如 Chroma、Pinecone、Qdrand

Chains:将 LLM 与其他组件相结合
LLMChain
各种工具Chain
LangChainHub

2. LangChain的六大核心模块

1. Models:模型统一接口

各种类型的模型和模型集成,比如OpenAI的各个API/GPT-4等等,为各种不同基础模型提供统一接口,也就是说在调用模型的时候,我们可以只通过 一个入口:
比如:这里以 ChatGPT为例,因为特殊原因,api的key,秘钥这些东西 需要申请。

import os
os.environ["OPENAI_API_KEY"] = '你的api key'
from langchain.llms import OpenAI
 
llm = OpenAI(model_name="text-davinci-003",max_tokens=1024)
llm("啥是人工智能")
# 可以选择的模型。以及模型的最大输入 token
        model_token_mapping = {
            "gpt-4": 8192,
            "gpt-4-0314": 8192,
            "gpt-4-0613": 8192,
            "gpt-4-32k": 32768,
            "gpt-4-32k-0314": 32768,
            "gpt-4-32k-0613": 32768,
            "gpt-3.5-turbo": 4096,
            "gpt-3.5-turbo-0301": 4096,
            "gpt-3.5-turbo-0613": 4096,
            "gpt-3.5-turbo-16k": 16385,
            "gpt-3.5-turbo-16k-0613": 16385,
            "text-ada-001": 2049,
            "ada": 2049,
            "text-babbage-001": 2040,
            "babbage": 2049,
            "text-curie-001": 2049,
            "curie": 2049,
            "davinci": 2049,
            "text-davinci-003": 4097,
            "text-davinci-002": 4097,
            "code-davinci-002": 8001,
            "code-davinci-001": 8001,
            "code-cushman-002": 2048,
            "code-cushman-001": 2048,
        }

2. Prompts:管理 LLM 输入

from langchain import PromptTemplate, FewShotPromptTemplate

examples = [
    {
   "word": "高兴", "antonym": "悲伤"},
    {
   "word": "高大", "antonym": "矮小"},
]

example_template = 
"""
词语: {word}
反义词: {antonym}\n
"""

example_prompt = PromptTemplate(
    input_variables=["word", "antonym"],
    template=example_template,
)

few_shot_prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    prefix="给出输入词语的反义词",
    suffix="词语: {input}\n反义词:",
    input_variables=["input"],
    example_separator="\n",
)

few_shot_prompt.format(input="美丽")
#上面的代码将生成一个提示模板,并根据提供的示例和输入组成以下提示:

#给出输入词语的反义词

#词语: 高兴
#反义词: 悲伤


#词语: 高大
#反义词: 矮小

#词语: 美丽
#反义词:

3. Chains:将 LLM 与其他组件相结合,执行多个chain

from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import SimpleSequentialChain

# location 链
llm = OpenAI(temperature=1)
template = """Your job is to come up with a classic dish from the area that the users suggests.
% USER LOCATION
{user_location}

YOUR RESPONSE:
"""
prompt_template = PromptTemplate(input_variables=["user_location"], template=template)
location_chain = LLMChain(llm=llm, prompt=prompt_template)

# meal 链
template = """Given a meal, give a short and simple recipe on how to make that dish at home.
% MEAL
{user_meal}

YOUR RESPONSE:
"""
prompt_template = PromptTemplate(input_variables=["user_meal"], template=template)
meal_chain = LLMChain(llm=llm, prompt=prompt_template)

# 通过 SimpleSequentialChain 串联起来,第一个答案会被替换第二个中的user_meal,然后再进行询问
overall_chain = SimpleSequentialChain(chains=[location_chain, meal_chain], verbose=True)
review = overall_chain.run("Rome")

4. Indexes:访问外部数据

访问外部数据,不得不介绍几个额外的,功能,就是langchain自带的几个模块。配合这几个小模块实现,外部数据的访问

a. Loader 加载器

这个就是从指定源进行加载数据的。比如:文件夹 DirectoryLoader、Azure 存储 AzureBlobStorageContainerLoader、CSV文件 CSVLoader、印象笔记 EverNoteLoader、Google网盘 GoogleDriveLoader、任意的网页 UnstructuredHTMLLoader、PDF PyPDFLoader、S3 S3DirectoryLoader/S3FileLoader、Youtube YoutubeLoader 等等,上面只是简单的进行列举了几个,官方提供了超级的多的加载器供你使用。
关于这里的官方介绍

#示例:
from langchain.document_loaders import UnstructuredFileLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import OpenAI

# 导入文本
loader = UnstructuredFileLoader("/content/sample_data/data/lg_test.txt")
# 将文本转成 Document 对象
document = loader.load()
print(f'documents:{len(document)}')
b. Document 文档(解决加载数据超过模型最大输入) 与 Text Spltters 文本分割

当使用loader加载器读取到数据源后,数据源需要转换成 Document 对象后,后续才能进行使用。
Text Spltters ,文本分割就是用来分割文本的。为什么需要分割文本?因为我们每次不管是做把文本当作 prompt 发给 openai api ,还是还是使用 openai api embedding 功能都是有字符限制的。

#示例:

from langchain.document_loaders import UnstructuredFileLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import OpenAI

# 导入文本
loader = UnstructuredFileLoader("/content/sample_data/data/lg_test.txt")
# 将文本转成 Document 对象
document = loader.load()
print(f'documents:{len(document)}')

# 初始化文本分割器
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 500,
    chunk_overlap = 0
)

# 切分文本
split_documents = text_splitter.split_documents(document)
print(f'documents:{len(split_documents)}')

# 加载 llm 模型
llm = OpenAI(model_name="text-davinci-003", max_tokens=1500)

# 创建总结链
chain = load_summarize_chain(llm, chain_type="refine", verbose=True)

# 执行总结链,(为了快速演示,只总结前5段)
chain.run(split_documents[:5])

这里有几个参数需要注意:

  1. 文本分割器的 chunk_overlap 参数
    这个是指切割后的每个 document 里包含几个上一个 document 结尾的内容,主要作用是为了增加每个 document 的上下文关联。比如,chunk_overlap=0时, 第一个 document 为 aaaaaa,第二个为 bbbbbb;当 chunk_overlap=2 时,第一个 document 为 aaaaaa,第二个为 aabbbbbb。

  2. chain 的 chain_type 参数

这个参数主要控制了将 document 传递给 llm 模型的方式,一共有 4 种方式:
stuff: 这种最简单粗暴,会把所有的 document 一次全部传给 llm 模型进行总结。如果document很多的话,势必会报超出最大 token 限制的错,所以总结文本的时候一般不会选中这个。
map_reduce: 这个方式会先将每个 document 进行总结,最后将所有 document 总结出的结果再进行一次总结。
refine: 这种方式会先总结第一个 document,然后在将第一个 document 总结出的内容和第二个 document 一起发给 llm 模型在进行总结,以此类推。这种方式的好处就是在总结后一个 document 的时候,会带着前一个的 document 进行总结,给需要总结的 document 添加了上下文,增加了总结内容的连贯性
map_rerank: 这种一般不会用在总结的 chain 上,而是会用在问答的 chain 上,他其实是一种搜索答案的匹配方式。首先你要给出一个问题,他会根据问题给每个 document 计算一个这个 document 能回答这个问题的概率分数,然后找到分数最高的那个 document ,在通过把这个 document 转化为问题的 prompt 的一部分(问题+document)发送给 llm 模型,最后 llm 模型返回具体答案。

d. Vectorstores 向量数据库

因为数据相关性搜索其实是向量运算。所以,不管我们是使用 openai api embedding 功能还是直接通过向量数据库直接查询,都需要将我们的加载进来的数据 Document 进行向量化,才能进行向量运算搜索。转换成向量也很简单,只需要我们把数据存储到对应的向量数据库中即可完成向量的转换。
官方也提供了很多的向量数据库供我们使用。

#示例:
from langchain.vectorstores import Chroma

# 持久化数据
docsearch = Chroma.from_documents(documents, embeddings, persist_directory="D:/vector_store")
docsearch.persist()

# 加载数据
docsearch = Chroma(persist_directory="D:/vector_store", embedding_function=embeddings)
e. Embedding

用于衡量文本的相关性。这个也是 OpenAI API 能实现构建自己知识库的关键所在。
他相比 fine-tuning 最大的优势就是,不用进行训练,并且可以实时添加新的内容,而不用加一次新的内容就训练一次,并且各方面成本要比 fine-tuning 低很多。

5. Memory:记住以前的对话

使用Memory实现一个带记忆的对话机器人

from langchain.memory import ChatMessageHistory
from langchain.chat_models import ChatOpenAI

chat = ChatOpenAI(temperature=0)

# 初始化 MessageHistory 对象
history = ChatMessageHistory()

# 给 MessageHistory 对象添加对话内容
history.add_ai_message("你好!")
history.add_user_message("中国的首都是哪里?")

# 执行对话
ai_response = chat(history.messages)
print(ai_response)

6. Agents:访问其他工具,自定义agent中所使用的工具

自定义agent中所使用的工具

from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.tools import BaseTool
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper

llm = OpenAI(temperature=0)

# 初始化搜索链和计算链
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm, verbose=True)

# 创建一个功能列表,指明这个 agent 里面都有哪些可用工具,agent 执行过程可以看必知概念里的 Agent 那张图
tools = [
    Tool(
        name = "Search",
        func=search.run,
        description="useful for when you need to answer questions about current events"
    ),
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="useful for when you need to answer questions about math"
    )
]

# 初始化 agent
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

# 执行 agent
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")

三、经典示例

1. 最简单的交互

用 LangChain 加载 OpenAI 的模型,并且完成一次问答。我们需要先设置我们的 openai 的 key,这个 key 可以在用户管理里面创建。

import os
os.environ["OPENAI_API_KEY"] = '你的api key'
然后,我们进行导入和执行
from langchain.llms import OpenAI

llm = OpenAI(model_name="text-davinci-003",max_tokens=1024)
llm("怎么评价人工智能")

2. 构建本地知识库问答机器人

从本地读取多个文档构建知识库,并且使用 Openai API 在知识库中进行搜索并给出答案。

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain import OpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA

# 加载文件夹中的所有txt类型的文件
loader = DirectoryLoader('/content/sample_data/data/', glob='**/*.txt')
# 将数据转成 document 对象,每个文件会作为一个 document
documents = loader.load()

# 初始化加载器
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
# 切割加载的 document
split_docs = text_splitter.split_documents(documents)

# 初始化 openai 的 embeddings 对象
embeddings = OpenAIEmbeddings()
# 将 document 通过 openai 的 embeddings 对象计算 embedding 向量信息并临时存入 Chroma 向量数据库,用于后续匹配查询
docsearch = Chroma.from_documents(split_docs, embeddings)

# 创建问答对象
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever(), return_source_documents=True)
# 进行问答
result = qa({"query": "科大讯飞今年第一季度收入是多少?"})
print(result)

3. 让输出内容 结构化起来

from langchain.output_parsers import StructuredOutputParser, ResponseSchema
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI

llm = OpenAI(model_name="text-davinci-003")

# 告诉他我们生成的内容需要哪些字段,每个字段类型式啥
response_schemas = [
    ResponseSchema(name="bad_string", description="This a poorly formatted user input string"),
    ResponseSchema(name="good_string", description="This is your response, a reformatted response")
]

# 初始化解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

# 生成的格式提示符
# {
#	"bad_string": string  // This a poorly formatted user input string
#	"good_string": string  // This is your response, a reformatted response
#}
format_instructions = output_parser.get_format_instructions()

template = """
You will be given a poorly formatted string from a user.
Reformat it and make sure all the words are spelled correctly

{format_instructions}

% USER INPUT:
{user_input}

YOUR RESPONSE:
"""

# 将我们的格式描述嵌入到 prompt 中去,告诉 llm 我们需要他输出什么样格式的内容
prompt = PromptTemplate(
    input_variables=["user_input"],
    partial_variables={"format_instructions": format_instructions},
    template=template
)

promptValue = prompt.format(user_input="welcom to califonya!")
llm_output = llm(promptValue)

# 使用解析器进行解析生成的内容
output_parser.parse(llm_output)

4. 使用 Hugging Face 模型

#使用 Hugging Face 模型之前,需要先设置环境变量
import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = ''
  1. 使用在线的 Hugging Face 模型
from langchain import PromptTemplate, HuggingFaceHub, LLMChain

template = """Question: {question}
Answer: Let's think step by step."""

prompt = PromptTemplate(template=template, input_variables=["question"])
llm = HuggingFaceHub(repo_id="google/flan-t5-xl", model_kwargs={"temperature":0, "max_length":64})
llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
print(llm_chain.run(question))
  1. 将 Hugging Face 模型直接拉到本地使用
from langchain import PromptTemplate, LLMChain
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForSeq2SeqLM

model_id = 'google/flan-t5-large'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)

pipe = pipeline(
    "text2text-generation",
    model=model,
    tokenizer=tokenizer,
    max_length=100
)

local_llm = HuggingFacePipeline(pipeline=pipe)
print(local_llm('What is the capital of France? '))


template = """Question: {question} Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])

llm_chain = LLMChain(prompt=prompt, llm=local_llm)
question = "What is the capital of England?"
print(llm_chain.run(question))

将模型拉到本地使用的好处:
训练模型
可以使用本地的 GPU
有些模型无法在 Hugging Face 运行

4. 通过自然语言执行SQL命令

我们通过 SQLDatabaseToolkit 或者 SQLDatabaseChain 都可以实现执行SQL命令的操作

from langchain.agents import create_sql_agent
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
from langchain.sql_database import SQLDatabase
from langchain.llms.openai import OpenAI

db = SQLDatabase.from_uri("sqlite:///../notebooks/Chinook.db")
toolkit = SQLDatabaseToolkit(db=db)

agent_executor = create_sql_agent(
    llm=OpenAI(temperature=0),
    toolkit=toolkit,
    verbose=True
)

agent_executor.run("Describe the playlisttrack table")
from langchain import OpenAI, SQLDatabase, SQLDatabaseChain

db = SQLDatabase.from_uri("mysql+pymysql://root:root@127.0.0.1/chinook")
llm = OpenAI(temperature=0)

db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)
db_chain.run("How many employees are there?")

参考文献
[1].https://blog.csdn.net/lht0909/article/details/130412875
[2].https://blog.csdn.net/v_JULY_v/article/details/131552592
[3].https://developer.aliyun.com/article/1221923
[4].https://liaokong.gitbook.io/llm-kai-fa-jiao-cheng/#jie-gou-hua-shu-chu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QuietNightThought

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值