树状数组
树状数组简介
树状数组,那么究竟它是树还是数组呢?数组在物理空间上是连续的,而树是通过父子关系关联起来的,而树状数组正是这两种关系的结合,首先在存储空间上它是以数组的形式存储的,即下标连续;其次,对于两个数组下标x,y(x < y),如果x + 2^k = y (k等于x的二进制表示中末尾0的个数),那么定义(y, x)为一组树上的父子关系,其中y为父结点,x为子结点。
将C[]数组的结点序号转化为二进制
1=(001) C[1]=A[1];
2=(010) C[2]=A[1]+A[2];
3=(011) C[3]=A[3];
4=(100) C[4]=A[1]+A[2]+A[3]+A[4];
5=(101) C[5]=A[5];
6=(110) C[6]=A[5]+A[6];
7=(111) C[7]=A[7];
8=(1000) C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];
结点的含义
然后我们来看树状数组上的结点Ci具体表示什么,这时候就需要利用树的递归性质了。我们定义Ci的值为它的所有子结点的值 和 Ai 的总和,之前提到当i为奇数时Ci一定为叶子结点,所以有Ci = Ai ( i为奇数 )。从图中可以得出:
C1 = A1
C2 = C1 + A2 = A1 + A2
C3 = A3
C4 = C2 + C3 + A4 = A1 + A2 + A3 + A4
C5 = A5
C6 = C5 + A6 = A5 + A6
C7 = A7
C8 = C4 + C6 + C7 + A8 = A1 + A2 + A3 + A4+ A5 + A6 + A7 + A8
建议直接看C8,因为它最具代表性。
我们从中可以发现,其实Ci还有一种更加普适的定义,它表示的其实是一段原数组A的连续区间和。根据定义,右区间是很明显的,一定是i,即Ci表示的区间的最后一个元素一定是Ai,那么接下来就是要求Ci表示的第一个元素是什么。从图上可以很容易的清楚,其实就是顺着Ci的最左儿子一直找直到找到叶子结点,那个叶子结点就是Ci表示区间的第一个元素。
更加具体的,如果i的二进制表示为 ABCDE1000,那么它最左边的儿子就是 ABCDE0100,这一步是通过结点父子关系的定义进行逆推得到,并且这条路径可以表示如下:
ABCDE1000 => ABCDE0100 => ABCDE0010=> ABCDE0001
这时候,ABCDE0001已经是叶子结点了,所以它就是Ci能够表示的第一个元素的下标,那么我们发现,如果用k来表示i的二进制末尾0的个数,Ci能够表示的A数组的区间的元素个数为2^k
如图,其中A为普通数组,C为树状数组(C在物理空间上和A一样都是连续存储的)。树状数组的第4个元素C4的父结点为C8 (4的二进制表示为"100",所以k=2,那么4 + 2^2 = 8),C6和C7同理。C2和C3的父结点为C4,同样也是可以用上面的关系得出的,那么从定义出发,奇数下标一定是叶子结点。
公式:
C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i]; (k为i的二进制中从最低位到高位连续零的长度)
主要方法:
Lowbit(x)方法:
lowbit(x)是x的二进制表达式中最低位的1所对应的值。
比如,6的二进制是110,所以lowbit(6)=2。
int lowbit(int t)
{
returnt&(-t);
}
//-t 代表t的负数 计算机中负数使用对应的正数的补码来表示
//例如 :
// t=6(0110)此时 k=1
//-t=-6=(1001+1)=(1010)
//t&(-t)=(0010)=2=2^1
C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i];
C[i]=A[i-lowbit(i)+1]+A[i-lowbit(i)+2]+......A[i];
区间查询
ok 下面利用C[i]数组,求A数组中前i项的和
举个例子 i=7;
sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]; 前i项和
C[4]=A[1]+A[2]+A[3]+A[4]; C[6]=A[5]+A[6]; C[7]=A[7];
可以推出: sum[7]=C[4]+C[6]+C[7];
序号写为二进制: sum[(111)]=C[(100)]+C[(110)]+C[(111)];
再举个例子 i=5
sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]; 前i项和
C[4]=A[1]+A[2]+A[3]+A[4]; C[5]=A[5];
可以推出: sum[5]=C[4]+C[5];
序号写为二进制: sum[(101)]=C[(100)]+C[(101)];
细细观察二进制 树状数组追其根本就是二进制的应用
结合代码
int getsum(int x)
{
int ans=0;
for(int i=x;i>0;i-=lowbit(i))
ans+=C[i];
return ans;
}
对于i=7 进行演示
7(111) ans+=C[7]
lowbit(7)=001 7-lowbit(7)=6(110) ans+=C[6]
lowbit(6)=010 6-lowbit(6)=4(100) ans+=C[4]
lowbit(4)=100 4-lowbit(4)=0(000)
对于i=5 进行演示
5(101) ans+=C[5]
lowbit(5)=001 5-lowbit(5)=4(100) ans+=C[4]
lowbit(4)=100 4-lowbit(4)=0(000)
单点更新
当我们修改A[]数组中的某一个值时 应当如何更新C[]数组呢?
回想一下 区间查询的过程,再看一下上文中列出的图
结合代码分析
void add(int x,inty)
{
for(int i=x;i<=n;i+=lowbit(i))
C[i]+=y;
}
//可以发现 更新过程是查询过程的逆过程
//由叶子结点向上更新C[]数组
如图:
当更新A[1]时 需要向上更新C[1] ,C[2],C[4],C[8]
C[1], C[2], C[4],C[8]
写为二进制C[(001)],C[(010)],C[(100)],C[(1000)]
1(001) C[1]+=A[1]
lowbit(1)=0011+lowbit(1)=2(010) C[2]+=A[1]
lowbit(2)=0102+lowbit(2)=4(100) C[4]+=A[1]
lowbit(4)=1004+lowbit(4)=8(1000) C[8]+=A[1]