树状数组

树状数组

树状数组简介

树状数组,那么究竟它是树还是数组呢?数组在物理空间上是连续的,而树是通过父子关系关联起来的,而树状数组正是这两种关系的结合,首先在存储空间上它是以数组的形式存储的,即下标连续;其次,对于两个数组下标x,y(x < y),如果x + 2^k = y (k等于x的二进制表示中末尾0的个数),那么定义(y, x)为一组树上的父子关系,其中y为父结点,x为子结点。

将C[]数组的结点序号转化为二进制

1=(001)      C[1]=A[1];

2=(010)      C[2]=A[1]+A[2];

3=(011)      C[3]=A[3];

4=(100)      C[4]=A[1]+A[2]+A[3]+A[4];

5=(101)      C[5]=A[5];

6=(110)      C[6]=A[5]+A[6];

7=(111)      C[7]=A[7];

8=(1000)    C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

 

结点的含义

 然后我们来看树状数组上的结点Ci具体表示什么,这时候就需要利用树的递归性质了。我们定义Ci的值为它的所有子结点的值 和 Ai 的总和,之前提到当i为奇数时Ci一定为叶子结点,所以有Ci = Ai  ( i为奇数 )。从图中可以得出:

     C1 = A1

     C2 = C1 + A2 = A1 + A2

     C3 = A3

     C4 = C2 + C3 + A4 = A1 + A2 + A3 + A4

     C5 = A5

     C6 = C5 + A6 = A5 + A6

     C7 = A7

     C8 = C4 + C6 + C7 + A8 = A1 + A2 + A3 + A4+ A5 + A6 + A7 + A8

  建议直接看C8,因为它最具代表性。

      我们从中可以发现,其实Ci还有一种更加普适的定义,它表示的其实是一段原数组A的连续区间和。根据定义,右区间是很明显的,一定是i,即Ci表示的区间的最后一个元素一定是Ai,那么接下来就是要求Ci表示的第一个元素是什么。从图上可以很容易的清楚,其实就是顺着Ci的最左儿子一直找直到找到叶子结点,那个叶子结点就是Ci表示区间的第一个元素。

      更加具体的,如果i的二进制表示为 ABCDE1000,那么它最左边的儿子就是 ABCDE0100,这一步是通过结点父子关系的定义进行逆推得到,并且这条路径可以表示如下:

      ABCDE1000 => ABCDE0100 => ABCDE0010=> ABCDE0001

      这时候,ABCDE0001已经是叶子结点了,所以它就是Ci能够表示的第一个元素的下标,那么我们发现,如果用k来表示i的二进制末尾0的个数,Ci能够表示的A数组的区间的元素个数为2^k

      如图,其中A为普通数组,C为树状数组(C在物理空间上和A一样都是连续存储的)。树状数组的第4个元素C4的父结点为C8 (4的二进制表示为"100",所以k=2,那么4 + 2^2 = 8),C6和C7同理。C2和C3的父结点为C4,同样也是可以用上面的关系得出的,那么从定义出发,奇数下标一定是叶子结点。

公式:

C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i]; ki的二进制中从最低位到高位连续零的长度)

主要方法:

Lowbit(x)方法:

lowbit(x)是x的二进制表达式中最低位的1所对应的值。

比如,6的二进制是110,所以lowbit(6)=2。

        int lowbit(int t)

        {

            returnt&(-t);

        }

//-t 代表t的负数 计算机中负数使用对应的正数的补码来表示

//例如 :

// t=6(0110)此时 k=1

//-t=-6=(1001+1)=(1010)

//t&(-t)=(0010)=2=2^1

C[i]=A[i-2^k+1]+A[i-2^k+2]+......A[i];

C[i]=A[i-lowbit(i)+1]+A[i-lowbit(i)+2]+......A[i];

区间查询

ok 下面利用C[i]数组,求A数组中前i项的和

举个例子 i=7;

sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7];   前i项和

C[4]=A[1]+A[2]+A[3]+A[4];   C[6]=A[5]+A[6];   C[7]=A[7];

可以推出:  sum[7]=C[4]+C[6]+C[7];

序号写为二进制: sum[(111)]=C[(100)]+C[(110)]+C[(111)];

 

再举个例子 i=5

sum[7]=A[1]+A[2]+A[3]+A[4]+A[5];   前i项和

C[4]=A[1]+A[2]+A[3]+A[4];   C[5]=A[5];

可以推出:  sum[5]=C[4]+C[5];

序号写为二进制: sum[(101)]=C[(100)]+C[(101)];

细细观察二进制 树状数组追其根本就是二进制的应用

结合代码

int getsum(int x)

{

int ans=0;

for(int i=x;i>0;i-=lowbit(i))

ans+=C[i];

return ans;

}

对于i=7 进行演示

 7(111)          ans+=C[7]

lowbit(7)=001  7-lowbit(7)=6(110)    ans+=C[6]

lowbit(6)=010  6-lowbit(6)=4(100)    ans+=C[4]

lowbit(4)=100  4-lowbit(4)=0(000)   

对于i=5 进行演示

 5(101)           ans+=C[5]

lowbit(5)=001  5-lowbit(5)=4(100)    ans+=C[4]

lowbit(4)=100  4-lowbit(4)=0(000)  

单点更新

 当我们修改A[]数组中的某一个值时  应当如何更新C[]数组呢?

回想一下 区间查询的过程,再看一下上文中列出的图

结合代码分析

            void add(int x,inty)

            {

                    for(int i=x;i<=n;i+=lowbit(i))

                    C[i]+=y;

               }

//可以发现 更新过程是查询过程的逆过程

//由叶子结点向上更新C[]数组

如图:

当更新A[1]时  需要向上更新C[1] ,C[2],C[4],C[8]

C[1], C[2], C[4],C[8]

写为二进制C[(001)],C[(010)],C[(100)],C[(1000)]

1(001)                                             C[1]+=A[1]

lowbit(1)=0011+lowbit(1)=2(010)     C[2]+=A[1]

lowbit(2)=0102+lowbit(2)=4(100)     C[4]+=A[1]

lowbit(4)=1004+lowbit(4)=8(1000)   C[8]+=A[1]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值