本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着互联网技术的飞速发展和数字媒体内容的爆炸式增长,电影作为一种重要的娱乐方式,其数量已远远超出个人能够逐一筛选的范围。传统的电影搜索和推荐方式,如简单的分类浏览或基于热门排行的推荐,已难以满足用户日益增长的个性化需求。在此背景下,协同过滤技术凭借其能够有效挖掘用户潜在兴趣并推荐相似内容的能力,逐渐成为电影推荐领域的研究热点。本研究旨在构建一个基于Django和Vue框架,并结合协同过滤算法的电影推荐系统,以提供更加精准、个性化的电影推荐服务,帮助用户在海量电影资源中快速找到符合自己喜好的影片。
研究意义
本研究的意义在于通过引入协同过滤技术,优化电影推荐系统的性能和效果,从而提升用户体验和满意度。首先,协同过滤算法能够充分利用用户的历史观影数据和行为模式,构建个性化的用户兴趣模型,进而实现精准推荐,满足用户的个性化需求。其次,该系统有助于解决信息过载问题,帮助用户在众多电影选择中快速定位到感兴趣的内容,节省搜索时间。此外,该系统还能为电影平台提供智能化的推荐服务,增强用户粘性,促进电影内容的传播与消费,推动电影产业的健康发展。
研究目的
本研究的主要目的是设计并实现一个基于Django和Vue框架,以及协同过滤算法的电影推荐系统。该系统应具备以下核心功能:电影信息管理、用户注册与登录、电影分类展示、热门电影推荐以及基于用户兴趣偏好的个性化推荐。通过该系统的开发,旨在为用户提供便捷、高效的电影发现途径,同时提升电影平台的用户粘性和商业价值。此外,本研究还将深入探索协同过滤算法在电影推荐中的实际应用效果,提出改进方案,以期进一步提高推荐精度和用户满意度。
研究内容
本研究内容将围绕协同过滤电影推荐系统的设计与实现展开,具体包括以下几个方面:
在系统功能方面,该系统将涵盖电影信息管理模块,支持电影信息的录入、修改和删除,包括电影名称、导演、演员、上映时间、简介等基本信息。用户管理模块将提供用户注册和登录功能,记录用户的观影历史和偏好,为个性化推荐提供数据基础。电影分类展示模块将根据电影的类型、地区、年代等属性进行分类展示,方便用户浏览和筛选。热门电影推荐模块将基于电影的热度、评分等指标,推荐当前最受欢迎的电影给用户。个性化电影推荐模块将运用协同过滤算法,根据用户的观影历史和偏好,生成个性化的电影推荐列表,满足用户的个性化需求。通过这些功能的实现,本研究将构建出一个功能丰富、性能优越的协同过滤电影推荐系统,为用户提供高质量的观影推荐服务。
进度安排:
2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;
2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;
2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;
2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;
2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;
2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。
参考文献:
[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).
[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.
[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).
[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.
[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.
[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.
[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).
[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.
[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.
[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.
[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.
[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端:Vue.js、HTML、CSS、JavaScript后端技术栈
后端:Python 3.7.7、Django 、MySQL5.7
开发工具:PyCharm社区版、Navicat 11以上版本
系统开发流程:
• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。
• 使用Python语言结合Django框架开发RESTful API。
• 利用MySQL数据库进行数据存储和查询。
• 通过PyCharm IDE进行代码编写、调试和项目管理。
毕设使用者指南
系统概览
本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。
前端使用指南
1.界面导航
- 主页:展示系统的主要功能和概览信息。
- 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。
2. 交互操作
- 使用HTML和CSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
- 利用JavaScript和Vue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。
后端服务指南
1. API使用
- 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
- 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。
2. 数据管理
- 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
- 用户可以通过系统界面或API访问数据库中的数据。