python毕设 基于协同过滤算法的服装风格推荐系统程序+论文

本系统(程序+源码+数据库+调试部署+开发环境)论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

一、选题背景

在当今数字化时代,个性化推荐系统在各个领域的应用日益广泛。关于服装推荐系统的研究,现有研究主要以通用的推荐算法或基于单一用户数据为主1。专门针对服装风格基于协同过滤算法的研究较少。随着人们时尚意识的增强,对服装风格的个性化需求不断提升。因此本选题将以服装风格推荐为研究情景,重点分析和研究基于协同过滤算法的服装风格推荐系统的构建问题,以期探寻如何更好地满足用户对服装风格个性化需求的问题原因,提出优化的推荐系统构建方案,为后续更加深入的研究提供基础。国内外在推荐系统方面有诸多成果,但在服装风格推荐这一细分领域,尤其是利用协同过滤算法进行精准推荐方面,还存在很大的研究空间。不同观点主要集中在如何平衡用户个性化需求与算法的普适性上,本课题旨在解决这一焦点问题,通过深入挖掘用户对服装风格的偏好数据,构建更加精准的推荐系统。

二、研究意义

本选题针对服装风格推荐不够精准等问题的研究具有重要的理论意义和现实意义。

  • 理论意义:本选题研究将对协同过滤算法在服装风格推荐领域的应用进行深入的剖析,进一步完善个性化推荐算法的理论体系,为算法在特定领域的优化提供理论依据。
  • 现实意义:通过构建基于协同过滤算法的服装风格推荐系统,可以为服装电商平台等提供精准的推荐服务,提高用户购买满意度,提升平台的销售额和用户粘性。同时也能帮助用户更高效地找到符合自己风格的服装,节省购物时间。

三、研究方法

本研究将采用文献研究法和实验法相结合的综合研究方法。

  • 文献研究法:通过查阅大量国内外关于协同过滤算法、服装推荐系统等方面的文献资料,了解现有研究的成果与不足,为本研究提供理论基础和参考依据。例如,在算法优化方面,可以借鉴前人的研究成果,避免重复工作。
  • 实验法:构建基于协同过滤算法的服装风格推荐系统原型,通过对不同用户群体进行测试,收集用户反馈数据,评估系统的推荐效果,进而对系统进行优化。

四、研究方案

(一)可能遇到的困难和问题

  • 数据获取与处理:获取足够多且有效的用户服装风格偏好数据可能存在困难,同时数据的清洗和预处理工作较为复杂。
  • 算法优化:协同过滤算法在服装风格推荐场景下可能存在精度不够高的问题,如何针对服装风格的特点对算法进行优化是一个挑战。
  • 系统功能整合:将用户、服装分类、服装信息等系统功能与推荐算法有效整合,确保系统的稳定性和高效性是需要解决的问题。

(二)解决的初步设想

  • 数据获取与处理:与服装电商平台合作获取真实的用户数据,同时利用数据挖掘技术对数据进行清洗和预处理,去除无效和噪声数据。
  • 算法优化:深入研究服装风格的特点,如不同风格之间的关联、季节性等因素,对协同过滤算法的相似度计算、推荐列表生成等环节进行改进。
  • 系统功能整合:采用模块化设计思想,将不同系统功能分别设计为独立模块,通过定义明确的接口进行连接,确保各模块之间的协同工作。

五、研究内容

本基于协同过滤算法的服装风格推荐系统主要包含以下研究内容:

  • 用户模块:研究用户的注册、登录、个人信息管理等基础功能,同时重点分析用户服装风格偏好的表示和更新机制。例如,如何通过用户的浏览历史、购买记录等数据准确地推断出用户的服装风格偏好,以及如何在用户风格偏好发生变化时及时更新系统中的数据。
  • 服装分类模块:研究服装分类的标准和体系,如何根据服装的风格、款式、季节等因素进行合理分类。并且探讨如何将服装分类信息与协同过滤算法相结合,以便为不同类型的服装进行精准推荐。例如,将休闲风格的服装进一步细分为运动休闲、时尚休闲等小类,提高推荐的针对性。
  • 服装信息模块:研究服装信息的存储和管理方式,包括服装的风格描述、图片、价格等信息。同时,分析如何根据服装信息中的风格元素与用户的偏好进行匹配,提高推荐的准确性。例如,对于具有多种风格元素的服装,如何确定其与用户偏好的匹配程度。
  • 推荐算法模块:深入研究协同过滤算法在服装风格推荐系统中的应用。包括算法的原理、实现步骤,以及如何根据本系统的特点对算法进行优化。例如,如何选择合适的相似度计算方法,如何处理数据稀疏性问题等,以提高推荐的质量和效率。

六、拟解决的主要问题

  • 精准推荐问题:通过对协同过滤算法的优化,结合服装风格的特点,解决当前服装推荐系统中推荐不够精准的问题,使推荐结果更符合用户的服装风格偏好。
  • 数据利用问题:充分利用用户、服装分类、服装信息等多方面的数据,挖掘数据之间的内在联系,解决数据利用率不高的问题,提高推荐系统的性能。

七、预期成果

  • 系统原型:成功构建一个基于协同过滤算法的服装风格推荐系统原型,该原型具备用户、服装分类、服装信息管理等功能,并且能够根据用户的服装风格偏好进行精准推荐。
  • 研究报告:撰写一篇详细的毕业设计研究报告,阐述研究背景、意义、方法、内容、结果等方面的内容,为后续相关研究提供参考。

进度安排:

2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;

2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;

2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;

2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;

2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;

2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。

参考文献:

[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).

[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).

[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.

[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.

[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.

[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.

[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具PyCharm社区版、Navicat 11以上版本

系统开发流程

• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

• 使用Python语言结合Django框架开发RESTful API。

• 利用MySQL数据库进行数据存储和查询。

• 通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值