ssm毕设乒乓球运动员管理系统源码+程序+论文

本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。

系统程序文件列表

开题报告内容

选题背景

乒乓球作为我国的国球,拥有广泛的群众基础和深厚的文化底蕴。随着乒乓球运动的普及和发展,对乒乓球运动员的管理也提出了更高的要求。目前,关于运动员管理系统的研究主要集中在综合性体育管理系统上,专门针对乒乓球运动员管理系统的研究较少。现有系统往往功能单一,缺乏针对乒乓球运动特点的定制化功能,如赛事信息的精细化管理、训练计划的个性化制定以及伤病记录的详细追踪等。因此,本选题将以乒乓球运动员管理系统为研究情景,重点分析和研究如何构建一个全面、高效、定制化的管理系统,以期探寻乒乓球运动员管理问题的原因和机制,提出对策建议,为后续更加深入的研究提供基础。

研究意义

本选题针对乒乓球运动员管理系统的研究具有重要的理论意义和现实实践意义。理论意义在于,通过对乒乓球运动员管理系统的深入研究,可以丰富和完善体育管理系统的理论体系,为其他运动项目的管理系统开发提供借鉴和参考。现实实践意义在于,构建一个高效、定制化的乒乓球运动员管理系统,可以提高运动员的管理效率,优化训练计划,减少伤病发生,提升运动员的竞技水平,同时也有助于教练和赛事组织者更好地进行赛事安排和运动员选拔。

研究方法

本研究将采用软件工程方法和文献研究法相结合的研究方法。首先,通过文献研究法,收集和分析国内外关于运动员管理系统的研究成果,了解当前的研究现状和发展趋势。其次,运用软件工程方法,进行系统的需求分析、设计、开发和测试。在需求分析阶段,通过问卷调查法和小组讨论法,收集乒乓球运动员、教练和赛事组织者的实际需求。在设计阶段,根据需求分析结果,设计系统的功能模块和数据库结构。在开发和测试阶段,采用功能分析法和实验法,对系统进行开发和测试,确保系统的稳定性和实用性。

研究方案

在研究过程中,可能遇到的困难和问题主要包括:一是如何准确获取乒乓球运动员、教练和赛事组织者的实际需求,确保系统的功能设计符合实际需求;二是如何设计合理的数据库结构,实现数据的高效存储和查询;三是如何确保系统的稳定性和安全性,防止数据泄露和非法访问。针对这些困难和问题,解决的初步设想是:一是通过问卷调查和小组讨论,广泛收集需求信息,并进行深入分析和整理;二是借鉴成熟的数据库设计经验和技巧,设计合理的数据库结构;三是采用先进的加密技术和安全措施,确保系统的安全性和稳定性。

研究内容

本研究内容将围绕乒乓球运动员管理系统的功能需求展开,具体包括:运动员信息管理模块,用于记录运动员的基本信息、技能特点和历史成绩;教练信息管理模块,用于记录教练的基本信息、执教经验和教学特点;赛事信息管理模块,用于发布赛事信息、安排赛程和记录比赛结果;训练计划管理模块,用于制定个性化的训练计划,并根据运动员的实际情况进行调整;训练日志管理模块,用于记录运动员的训练情况和训练效果;伤病记录和就医记录管理模块,用于记录运动员的伤病情况和就医记录,以便及时采取治疗措施;积分榜管理模块,用于记录运动员的积分情况,并根据积分进行排名;积分充值和扣除管理模块,用于管理运动员的积分变动情况。通过这些功能模块的实现,构建一个全面、高效、定制化的乒乓球运动员管理系统。

进度安排:

 2023年8月23日-2023年9月18日   与指导老师进行沟通,确认选题并提交题目进行审核

2023年9月19日-2023年10月22日  查询资料,完成开题报告与答辩

2023年10月23日-2023年11月24日 完成毕业设计并向指导老师提交论文初稿

2023年11月25日-2023年12月16日 完成对初稿的修改,并且向老师提交修改后的论文中稿

2023年12月17日-2024年1月20日  完成对中稿的修改,并且向老师提交修改后的论文终稿

2024年1月21日-2024年3月10日   准备结题答辩资料,开始论文答辩

参考文献:

[1] 刘雪花. 计算机软件JAVA编程特点及其技术探究[J]. 科技风, 2021, (23): 76-78。

[2] 张开利. 试论当前高校Java语言可视化程序设计教学中存在的问题[J]. 中国管理信息化, 2021, 24 (12): 221-222。

[3] 万善宇. 基于Java的企业管理咨询信息存储加密软件V1.0. 湖北省, 武汉东湖学院, 2021-11-01。

[4] 孙丽红. Java开发综合实训中开展课程思政教学模式研究与实践[J]. 中国新通信, 2022, 24 (22): 118-120。

[5] 陈昊. 基于Java的软件开发项目综合管理系统V1.0. 湖北省, 武汉东湖学院, 2021-07-01。

[6] 伏明兰, 陈吕强, 肖建于. “金课”标准下Java程序设计课程教学改革研究[J]. 黄山学院学报, 2021, 23 (03): 113-115。

[7] 陈政. 基于java的数据采集管理系统V1.0. 湖北省, 武汉东湖学院, 2021-09-01。

[8] 庄帅. 内容管理系统的实现[J]. 信息系统工程, 2022, (08): 101-104。

[9] 张开利. 基于Java语言的安卓手机软件开发教学研究[J]. 数字技术与应用, 2021, 39 (06): 40-42。

[10] 欧阳欢. 基于java的软件开发测试搭建管理系统V1.0. 湖北省, 武汉东湖学院, 2021-05-01。

[11] 黄志超. Java程序设计课程改革[J]. 电脑知识与技术, 2021, 17 (25): 202-204。

[12] 张浩博. 基于Java的计算机技术开发研究管理系统V1.0. 湖北省, 武汉东湖学院, 2021-07-01。

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术+界面为准,可以酌情参考使用开题的内容。要源码参考请在文末进行获取!!

系统部署环境:

数据库MySQL 5.7

开发工具EclipseIntelliJ IDEA

运行环境和构建工具Tomcat 7.0JDK 1.8Maven 3.3.9

前端技术HTMLCSSJavaScript (JS)Vue.js:

后端技术JavaSpringMyBatis、springmvc Maven

开发流程:

  1. 环境搭建
    • 安装JDK 1.8,配置环境变量。
    • 安装Maven 3.3.9,用于依赖管理和项目构建。
    • 安装Tomcat 7.0,作为应用服务器。
    • 安装Eclipse或IntelliJ IDEA作为开发IDE。
  2. 数据库设计
    • 使用MySQL 5.7设计数据库模型。
    • 创建数据库表,定义索引以优化查询。
    • 编写SQL脚本,用于数据库的初始化和迁移。
  3. 项目初始化
    • 使用Maven创建项目骨架,定义项目结构和依赖。
    • 配置pom.xml文件,添加所需的依赖库。
  4. 后端开发
    • 搭建Spring框架,配置Spring应用上下文。
    • 实现MyBatis与数据库的交互,编写Mapper和对应的XML或注解。
    • 开发SpringMVC控制器,处理HTTP请求和响应。
    • 实现业务逻辑,编写服务层代码。
  5. 前端开发
    • 设计前端页面布局,编写HTML和CSS。
    • 使用JavaScript或Vue.js实现前端逻辑和动态效果。
    • 集成Vue.js框架,构建单页应用(SPA)。

程序界面:

源码、数据库获取↓↓↓↓

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值