springboot毕设任我看——视频推荐系统的开发程序+论文+部署

本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。

系统程序文件列表

开题报告内容

一、研究背景

随着互联网技术的飞速发展,视频内容呈现出爆炸式增长。各类视频平台不断涌现,用户可获取的视频资源数量极为庞大,从海量的视频中找到符合自己兴趣的视频变得愈发困难。例如在影视类视频方面,既有各大影视制作公司不断产出的新作品,也有众多用户上传的自制内容;在教育类视频领域,不同教育机构、个人创作者也在持续发布各类教学视频。这导致了严重的信息过载现象,用户往往在众多视频面前无从下手。此外,不同用户对视频有着多样化的需求,如有的用户偏好娱乐搞笑类视频以放松身心,有的则更关注知识技能类视频用于自我提升。传统的视频推荐方式难以满足用户个性化、精准化的需求,在这样的背景下,开发“任我看——视频推荐系统”具有很强的现实意义 31

二、研究意义

该视频推荐系统的开发有着多方面的重要意义。对于用户而言,能够大大提高获取视频的效率,精准地推送符合用户兴趣爱好的视频,节省用户筛选视频的时间,提升用户体验。比如一个热爱烹饪的用户,能够快速获取到各类烹饪教学视频、美食探索视频等。从视频创作者和平台的角度来看,有助于提高视频的点击率和传播度。通过精准推荐,优质的视频内容更容易被目标受众发现,从而激励创作者创作更多高质量的视频,同时也有助于平台吸引更多的用户流量,增加平台的商业价值。在整个视频产业层面,能够优化视频资源的配置,使各类视频能够更高效地到达有需求的用户手中,促进视频产业的健康发展 31

三、研究目的

本研究旨在开发一个名为“任我看——视频推荐系统”的平台。通过分析用户的行为数据,如观看历史、点赞、评论等,结合视频自身的分类信息和其他相关信息,构建一个智能的推荐模型。该模型的目的是实现精准、个性化的视频推荐,以满足不同用户对视频内容的多样化需求,提高用户满意度,同时也为视频创作者和平台提供一个有效的推广和运营工具,促进视频产业的繁荣发展 31

四、研究内容

(一)用户相关研究内容

  1. 用户行为数据收集与分析
    • 收集用户在视频平台上的各种行为数据,包括观看视频的时长、播放次数、是否完整观看、点赞、收藏、评论等。这些数据能够反映用户对视频的喜好程度和兴趣方向。例如,用户频繁观看某个系列的视频并且多次点赞,说明该用户对这类视频有较高的兴趣。
    • 利用数据分析技术对收集到的数据进行挖掘,分析用户的行为模式。例如,通过关联规则挖掘,发现同时观看视频A和视频B的用户,也可能对视频C感兴趣。
  2. 用户画像构建
    • 根据用户的行为数据、注册信息(如年龄、性别、地域等)构建用户画像。用户画像能够直观地呈现用户的特征和兴趣偏好。比如,构建出一个25 - 35岁、男性、位于一线城市、喜欢科技和数码产品的用户画像。
    • 对用户画像进行动态更新,因为用户的兴趣可能会随着时间发生变化。例如,一个原本只关注娱乐新闻的用户,可能因为工作需要开始关注财经类视频,系统需要及时更新其用户画像。

(二)视频分类相关研究内容

  1. 视频分类体系建立
    • 确定视频分类的维度和标准。可以从视频的内容类型(如娱乐、教育、科技等)、时长(长视频、短视频)、受众群体(儿童、成人等)等多方面进行分类。例如,将视频分为电影、电视剧、综艺节目等属于内容类型的分类;将时长在15秒以内的定义为短视频,这是时长维度的分类。
    • 建立视频分类的标签体系,以便于对视频进行准确标注。例如,对于一个美食制作的视频,可以标注为“美食 - 烹饪 - 中式菜肴”等多层标签。
  2. 视频分类算法研究
    • 研究适合视频分类的算法,如基于内容的分类算法。这种算法通过分析视频的画面、音频、字幕等内容来确定视频的类别。例如,通过分析视频中的声音是乐器演奏还是人物对话,画面是自然风光还是城市建筑等内容来分类。
    • 采用机器学习算法对视频分类算法进行优化。例如,利用深度学习中的卷积神经网络(CNN)来提高视频分类的准确性,通过大量的训练数据让模型学习到不同视频类型的特征,从而更准确地对视频进行分类。

(三)视频信息相关研究内容

  1. 视频元数据研究
    • 对视频的元数据进行收集和整理,元数据包括视频的标题、简介、发布时间、发布者等信息。这些元数据可以为视频推荐提供辅助信息。例如,视频的发布时间可以反映其时效性,新发布的视频可能对关注热门话题的用户有吸引力。
    • 挖掘视频元数据中的有用信息,如通过分析标题中的关键词,确定视频的主题内容。如果标题中包含“旅游攻略”,那么可以初步判断该视频与旅游相关。
  2. 视频内容分析
    • 除了元数据,还需要对视频的实际内容进行分析。例如,对于一个电影视频,分析其剧情、演员阵容、导演风格等。对于教育类视频,分析其教学内容的深度、讲解的清晰度等。
    • 结合视频内容分析和元数据分析,全面评估视频的质量和吸引力,以便在推荐时能够更准确地将视频推送给合适的用户。例如,一个高质量且内容有趣的教育类视频可以推荐给对该学科感兴趣并且喜欢生动讲解风格的用户。

进度安排:

2022年9月至10月:需求分析和规划,进行用户需求调研和分析,确定系统功能和目标。

2022年11月至2023年1月:系统设计和开发,完成系统架构设计和技术选型,并开始编写代码。

2023年2月至3月:测试和优化,进行单元测试和集成测试,修复问题并优化系统性能。

2023年4月至5月:文档编写和培训,编写用户手册和系统文档,并进行相关人员的培训。

2023年5月:上线部署和维护,将系统部署到生产环境中,并定期进行维护和升级。

参考文献:

[1]王红娟. 基于计算机软件开发的Java编程语言分析[J]. 电脑知识与技术, 2021, 17 (05): 60-61.

[2]刘震林, 喻春梅. 基于MVC模式的JAVA Web开发与实践应用研究[J]. 网络安全技术与应用, 2021, (01): 57-58.

[3]梁雪峰. 项目化教学在Java Web网站开发课程中的探究与实践[J]. 电脑与信息技术, 2020, 28 (06): 71-74.

[4]杨知昊. Java Web编程中页面跳转乱码问题的解决方案[J]. 电子制作, 2020, (20): 67-68+63.

[5]于晓婷, 孙璐荣. Java程序设计语言在软件开发中的应用探讨[J]. 电子测试, 2020, (20): 130-131+97.

[6]朱恒伟, 于士军, 马洪新. 面向企业需求的Java课程项目化教学改革研究[J]. 河北农机, 2020, (09): 87+110.

[7]刘莹. 计算机软件开发中Java编程语言的应用研究[J]. 计算机产品与流通, 2020, (09): 42.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术+界面为准,可以酌情参考使用开题的内容。要源码参考请在文末进行获取!!

运行环境

开发工具:idea/eclipse/myeclipse

数据库:mysql5.7或8.0

操作系统:win7以上,最好是win10

数据库管理工具:Navicat10以上版本

环境配置软件: JDK1.8+Maven3.3.9

服务器:Tomcat7.0

技术栈

  1. 前端技术
    • 使用Vue.js框架构建用户界面,这是一个现代的前端JavaScript框架,能够帮助创建动态的、单页的应用程序。
  2. 后端技术
    • SSM框架:这是Spring、SpringMVC和MyBatis三个框架的整合,其中:
      • Spring负责业务对象的管理和业务逻辑的实现。
      • SpringMVC处理Web层的请求分发,将用户的请求指派给后端的控制器处理。
      • MyBatis作为数据持久层框架,负责与MySQL数据库的交互。
  3. 数据库技术
    • 使用MySQL作为关系型数据库管理系统,存储应用数据。
    • Navicat作为数据库可视化工具,方便进行数据库的管理、维护和设计。
  4. 开发环境和工具
    • JDK 1.8:Java开发工具包,用于编译和运行Java应用程序。
    • Apache Tomcat 7.0:作为Web应用服务器,用于部署和运行Web应用程序。
    • Maven 3.3.9:用于项目管理和构建自动化,它可以帮助您管理项目的构建、报告和文档。
  5. 开发流程
    • 使用Maven进行项目依赖管理和构建。
    • 开发时,前后端可以分离开发,前端通过Vue.js构建用户界面,并通过Ajax与后端进行数据交互。
    • 后端使用SSM框架进行业务逻辑处理和数据持久化操作。
    • 开发完成后,将前端静态文件部署到Tomcat服务器,后端代码也部署在Tomcat上,实现整个Web应用的运行。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值